Foreword by:
Ankur Gupta

Founder of Numeratelabs LLP

Cloud Native
Python

Practical techniques to build apps that dynamically scale
to handle any volume of data, traffic, or users

Cloud Native Python

Practical techniques to build apps that dynamically scale to
handle any volume of data, traffic, or users

Manish Sethi

BIRMINGHAM - MUMBAI

Cloud Native Python

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017
Production reference: 1190717

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-931-3

www.packtpub.com

http://www.packtpub.com

Author
Manish Sethi

Reviewers
Sanjeev Kumar Jaiswal
Mohit Sethi

Commissioning Editor
Aaron Lazar

Acquisition Editor
Alok Dhuri

Content Development Editor
Lawrence Veigas

Technical Editor
Supriya Thabe

Credits

Copy Editor
Sonia Mathur

Project Coordinator
Prajakta Naik

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Nilesh Mohite

Foreword

In 2000, during the peak of the dotcom boom, I developed web applications in C++ and Perl.
One had to personally go to the ISP data center and install the machine along with a RAID
setup. From 2003-2006, the world moved to shared hosting powered by virtual machines.
Today, the world is a different place, one where cloud computing providers, such as AWS,
Azure, Google Cloud, and programming languages such as Python, Ruby, and Scala make
it child's play to launch and scale websites.

While cloud computing makes it easy to get started, its offerings are ever expanding with
new tools, deployment methodologies, and changing workflows. Take, for instance, what
compute offerings should a developer build on? Software as a Service, or Platform as a
Service, or Infrastructure as a Service Platform? Should the developer choose Docker, or a
normal virtual machine setup for deployment? Should the entire software architecture
follow an MVC or a microservices model?

Manish has a done a good job in the book, equipping a Python developer with skills to
thrive in a cloud computing world. The book starts off with laying the foundation of what
cloud computing is all about and its offerings. It's beneficial that most chapters in the book
are self-contained, allowing the reader to pick up and learn/refresh their knowledge of
what's needed for the current sprint/task. The workings of technologies such as CI and
Docker are precisely explained in clear prose that does away with the underlying
complexity. The Agile model of software development keeps us developers on toes,
requiring developers to learn new tools in days and not weeks. The book's hands-on
approach to teaching with screenshots on installation, configuration, and compact code
snippets equips developers with the knowledge they need, thus making them productive.

A preference for full-stack developers, the implicit requirement of knowing cloud
computing 101, and CIOs wanting to achieve a lot more with small teams are the norms
today. Cloud Native Python is the book a freshman, beginner, or intermediate Python
developer should read to get themselves up to speed on the tools and technology that
power today's software development.

The complexity of cloud computing is in the details, be it the deployment workflow,
managing infrastructure, security, or the tooling ecosystem. These choices have lasting
implications for the software that's being built and the team developing and maintaining it.

Ankur Gupta
Founder of NumerateLabs LLP
Curator of newsletters: ImportPython & DjangoWeekly

About the Author

Manish Sethi works as an engineer in Bangalore, India. Over the course of his career, he
has worked for startups and Fortune 10 companies, helping organizations adopt a cloud
native approach to architecting massively scalable products.

He regularly spends time learning and implementing new technology paradigms and
actively finds himself solving practical problems using serverless architecture, machine and
deep learning, and so on. He contributes to Bangalore DevOps and the Docker community
by writing blog posts, giving talks in meetups, and so on.

[would like to thank my brother, Mohit Sethi, and my mother, Neelam Sethi, who have
been very supportive and encouraged me throughout my career and when writing this
book.

About the Reviewers

Sanjeev Kumar Jaiswal is a computer graduate with 8 years of industrial experience. He
uses Perl, Python, and GNU/Linux for his day-to-day activities. He is currently working on
projects involving Penetration testing, Source Code Review, Security Design and
implementations, and Web and Cloud Security projects.

Currently, Sanjeev is learning Node]S and React Native as well. He loves teaching
engineering students and IT professionals, and he has been teaching for the last 8 years in
his leisure time.

He founded Alien Coders (http://www.aliencoders.org) based on the learning through
sharing principle, for computer science students and IT professionals in 2010, which became
a huge hit in India among engineering students. You can follow him on Facebook at http
://www.facebook.com/aliencoders, on Twitter at Galiencoders, and on GitHub at nhttp

s://github.com/Jjassics.

He has authored Instant PageSpeed Optimization, and co-authored Learning Django Web
Development, both by Packt. He has reviewed more than seven books for Packt and looks
forward to authoring or reviewing more books for Packt and other publishers.

Mohit Sethi is a solutions architect with 10+ years of experience in building and managing
products across the IaaS, PaaS, and SaaS space in the areas of cloud, storage, distributed
systems, data analytics, and machine learning. Previously, he worked for a Silicon Valley
startup, a Fortune 10 company, and a National Defense Organization. He has been an open
source contributor for 12+ years and has been running the DevOps meetup group in
Bangalore for more than 3 years.

You can contact him on Twitter at https://twitter.com/mohitsethi, LinkedIn (https
://in.linkedin.com/in/mohitsethi7), and GitHub (https://github.com/mohitsethi).

http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.aliencoders.org
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
http://www.facebook.com/aliencoders
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://github.com/jassics
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://twitter.com/mohitsethi
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://in.linkedin.com/in/mohitsethi7
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi
https://github.com/mohitsethi

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787129314.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129314

Table of Contents

Preface 1
Chapter 1: Introducing Cloud Native Architecture and Microservices 6
Introduction to cloud computing 7
Software as a Service 9
Platform as a Service 9
Infrastructure as a Service 10
The cloud native concepts 10
Cloud native - what it means and why it matters? 12
The cloud native runtimes 12
Cloud native architecture 13

Are microservices a new concept? 15

Why is Python the best choice for cloud native microservices development? 16
Readability 17

Libraries and community 17

Interactive mode 17

Scalable 17
Understanding the twelve-factor app 17
Setting up the Python environment 20
Installing Git 20
Installing Git on Debian-based distribution Linux (such as Ubuntu) 21

Seting up Git on a Debian-based distribution 22
Installing Git on Windows 22

Using Chocolatey 26

Installing Git on Mac 27
Installing the command-line tools for OS X 27

Installing Git for OS X 28

Installing and configuring Python 32
Installing Python on a Debian-based distribution (such as Ubuntu) 32

Using the APT package management tools 32

Using source code 33

Installing Python on Windows 34
Installing Python on Mac 36
Installing the command-line tools for OS X 36

Installing Python for OS X 37

Getting familiar with the GitHub and Git commands 42
Summary 43
Chapter 2: Building Microservices in Python 44

Python concepts 44
Modules 44
Functions 45

Modeling microservices 47

Building microservices 48
Building resource user methods 54

GET /api/v1/users 54
GET /api/v1/users/[user_id] 55
POST /api/v1/users 58
DELETE /api/v1/users 60
PUT /api/v1/users 61
Building resource tweets methods 64
GET /api/v2/tweets 64
POST /api/v2/tweets 66
GET /api/v2/tweets/[id] 68

Testing the RESTful API 69
Unit testing 70

Summary 73

Chapter 3: Building a Web Application in Python 74

Getting started with applications 75

Creating application users 76
Working with Observables and AJAX 77
Binding data for the adduser template 79

Creating tweets from users 82
Working on Observables with AJAX for the addtweet template 83
Data binding for the addtweet template 85

CORS - Cross-Origin Resource Sharing 87

Session management 89

Cookies 92

Summary 92

Chapter 4: Interacting Data Services 93

MongoDB - How it is advantageous, and why are we using it? 93
MongoDB terminology 95

Setting up MongoDB 96
Initializing the MongoDB database 97
Integrating microservices with MongoDB 99
Working with user resources 100

GET api/v1/users 100
GET api/v1/users/[user_id] 101
POST api/v1/users 103

[ii]

PUT api/v1/users/[user_id] 105
DELETE api/v1/users 106
Working with the tweets resources 108
GET api/v2/tweets 108

GET api/v2/tweets/[user_id] 108

POST api/v2/tweets 109
Summary 111
Chapter 5: Building WebViews with React 112
Understanding React 112
Setting up the React environment 113
Installing node 113
Creating package.json 114
Building webViews with React 115
Integrating webView with microservices 123
User authentication 125
Login user 125
Sign up user 127
User profile 130
Log out users 133
Testing the React webViews 134
Jest 134
Selenium 134
Summary 135
Chapter 6: Creating Uls to Scale with Flux 136
Understanding Flux 136
Flux concepts 137
Adding dates to Ul 138
Building user interfaces with Flux 139
Actions and dispatcher 140
Stores 143
Summary 153
Chapter 7: Learning Event Sourcing and CQRS 154
Introduction 155
Understanding Event Sourcing 158
Laws of Event Sourcing 160
Introduction to CQRS 163
Advantages of the CQRS-ified architecture 165
Challenges related to ES and CQRS 166
Overcoming challenges 167

[iii]

Problem solving

167

Explanation of the problem 168

The solution 168

Kafka as an eventstore 173
Applying Event Sourcing with Kafka 174
How it works 176
Summary 176
Chapter 8: Securing the Web Application 177
Network security versus application security 177
The web application stack 178
Application - security alternatives in the platform 178
Transport protocol 179

Application protocol 179

Application - security threats in application logic 180

Web application security alternatives 180

A word on developing security-enabled web applications 202
Summary 202
Chapter 9: Continuous Delivery 203
Evolution of continuous integration and continuous delivery 203
Understanding SDLC 204
The Agile software development process 205
How does the Agile software development process work? 206
Continuous integration 208
Jenkins - a continuous integration tool 209
Installing Jenkins 209
Prerequisite 209
Installation on a Debian (Ubuntu)-based system 210
Configuring Jenkins 212
Automating Jenkins 215
Securing Jenkins 216
Plugins management 217
Version control systems 218
Setting up a Jenkins job 219
Understanding continuous delivery 227
Need for continuous delivery 228
Continuous delivery versus continuous deployment 229
Summary 229
Chapter 10: Dockerizing Your Services 230
Understanding Docker 230
Few facts about Docker versus virtualization 231

[iv]

Docker Engine - The backbone of Docker 232
Setting up the Docker environment 232
Installing Docker on Ubuntu 232
Installation on Windows 235

Setting up Docker Swarm 236
Setting up the Docker environment 237
Assumption 237

Initializing the Docker manager 237

Add node1 to master 238

Testing the Docker Swarm 238
Deploying an application on Docker 240
Building and running our MongoDB Docker service 241
Docker Hub - what is it all about? 245
Docker Compose 252
Summary 255
Chapter 11: Deploying on the AWS Platform 256
Getting started with Amazon Web Services (AWS) 256
Building application infrastructure on AWS 259
Generating authentication keys 260
Terraform - a tool to build infrastructure as code 265
Configuring the MongoDB server 270
Configuring the Elastic Load balancer 272
CloudFormation - an AWS tool for building infrastructure using code 275
The VPC stack on AWS 277
Continuous Deployment for a cloud native application 283
How it works 284
Implementation of the Continuous Deployment pipeline 284
Summary 292
Chapter 12: Implementing on the Azure Platform 293
Getting started with Microsoft Azure 293
A few points on Microsoft Azure basics 296
Architecturing our application infrastructure using Azure 297
Creating a virtual machine in Azure 299
CI/CD pipeline using Jenkins with Azure 314
Summary 320
Chapter 13: Monitoring the Cloud Application 321
Monitoring on the cloud platform 321
AWS-based services 322
CloudWatch 322
CloudTrail 327

[v]

AWS Config service
Microsoft Azure services
Application Insights

Introduction to ELK stack
Logstash
Elasticsearch
Kibana

Open source monitoring tool
Prometheus
Summary

Index

328
331
331

334
335
337
339

341
341
344

345

[vil

Preface

Businesses today are evolving so rapidly that having their own infrastructure to support
their expansion is not feasible. As a result, they have been resorting to the elasticity of the
cloud to provide a platform to build and deploy their highly scalable applications.

This book will be the one stop for you to learn all about building cloud-native architectures
in Python. It will begin by introducing you to cloud-native architecture and will help break
it down for you. Then you'll learn how to build microservices in Python using REST API's
in an event-driven approach and you will build the web layer. Next, you'll learn about
interacting with data services and building web views with React, after which we will take
a detailed look at application security and performance. Then, you'll also learn how to
Dockerize your services. And finally, you'll learn how to deploy the application on the AWS
and Azure platforms. We will end the book by discussing some concepts and techniques
around troubleshooting problems that might occur with your applications after you've
deployed them.

This book will teach you how to craft applications that are built as small standard units,
using all the proven best practices and avoiding the usual traps. It's a practical book; we're
going to build everything using Python 3 and its amazing tooling ecosystem. The book will
take you on a journey, the destination of which is the creation of a complete Python
application based on microservices over the cloud platform.

What this book covers

Chapter 1, Introducing Cloud Native Architecture and Microservices, discusses basic cloud
native architecture and gets you ready to build applications.

Chapter 2, Building Microservices in Python, gives you complete knowledge of building
microservices and extending them as per your use cases.

Chapter 3, Building a Web Application in Python, builds an initial web application with
integration with microservices.

Chapter 4, Interacting Data Services, gives you hands-on knowledge of how to migrate your
application to different database services.

Chapter 5, Building WebViews with React, discusses how to build a user interface using
React.

Preface

Chapter 6, Creating Uls to Scale with Flux, gives you an understanding about Flux for scaling
applications.

Chapter 7, Learning Event Sourcing and CQRS, discusses how to store transactions in the
form of events to improve application performance.

Chapter 8, Securing the Web Application, helps you secure your application from outside
threats.

Chapter 9, Continuous Delivery, gives you knowledge towards frequently application
release.

Chapter 10, Dockerizing Your Services, talks about container services and running
applications in Docker.

Chapter 11, Deploying on the AWS Platform, teaches you how to build an infrastructure and
set up a production environment for your application on AWS.

Chapter 12, Implementing on the Azure Platform, discusses how to build infrastructures and
set up a production environment for your application on Azure.

Chapter 13, Monitoring the Cloud Application, makes you aware of the different
infrastructure and application monitoring tools.

What you need for this book

You will need to have Python installed on your system. A text editor, preferably
Vim/Sublime/Notepad++, would be great. For one of the chapters, you may be required to
download POSTMAN, which is a powerful API testing suite available as a Chrome
extension. You can download this at https://chrome.google.com/webstore/detail/post
man/fhbjgbiflinjbdggehcddcbncdddomop?hl=en.

Other than these, it would be great if you have an account on the following web
applications:

¢ Jenkins

e Docker

o Amazon Web Services
o Terraform

In case you do not have an account, this book will guide you, or at least direct you with
regards to creating an account on the previously mentioned web applications.

[2]

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

Preface

Who this book is for

This book is for developers with a basic knowledge of Python, the command line, and
HTTP-based application principles. It is ideal for those who want to learn to build, test, and
scale their Python-based applications. No prior experience of writing microservices in
Python is required.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "Create a
signup route, which will take the GET and POST methods to read the page, and submit the
data to the backend database."

A block of code is set as follows:

sendTweet (event) {
event .preventDefault ();
this.props.sendTweet (this.refs.tweetTextArea.value);
this.refs.tweetTextArea.value = "'';

}
Any command-line input or output is written as follows:

$ apt—-get install nodejs

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the Create user
button, the user will be created, and the policy will be attached to it."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[3]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk »h =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Cloud-Native-Python. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[5]

https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Introducing Cloud Native
Architecture and Microservices

Here we go! Before we begin to build our application, we need to find answers to some of
the following queries:

e What is cloud computing? What are its different types?
e What is microservices and its concept?
e What are the basic requirements for good to go?

In this chapter, we will focus on the different concepts that a developer or application
programmer should understand before they start writing an application.

Let's first understand a bit about system building and how it evolves.

For a long time now, we have been discovering better approaches to constructing
frameworks. With advances in new technologies and adoption of better approaches, the IT
framework becomes more reliable and effective for clients (or customers), and makes
engineers happy.

Continuous delivery helps us move our software development cycle into production, and
lets us identify different error-prone perspectives of software, insisting on us the idea of
considering every check-in to code as a suitable candidate to release it to production.

Introducing Cloud Native Architecture and Microservices

Our comprehension of how the web functions has driven us to grow better methods for
having machines converse with other machines. The virtualization platform has permitted
us to make arrangements and resize our machines freely, with foundation computerization
giving us an approach to deal with these machines at scale. Some huge, effective cloud
platforms, such as Amazon, Azure, and Google have embraced the perspective of little
groups owning the full life cycle of their services. Concepts such as Domain-Driven Design
(DDD), continuous delivery (CD), on-request virtualization, infrastructure robotization,
small self-governing groups, and systems at scale are different traits, which effectively, and
efficiently, get our software into production. And now, microservices has risen up out of
this world. It wasn't developed or portrayed before the reality; it rose as a pattern, or, for
example, from true utilization. All through this book, I will haul strands out of this earlier
work to help illustrate how to fabricate, oversee, and advance microservices.

Numerous associations have found that by grasping fine-grained microservice structures,
they can convey programming speedily, and grasp more up-to-date advancements.
Microservices gives us, fundamentally, more flexibility to respond and settle on various
choices, permitting us to react quickly to the unavoidable changes that affect every one of
us.

Introduction to cloud computing

Before we begin with microservices and cloud native concepts, let's first understand what
cloud computing is all about.

Cloud computing is a wide term that portrays a wide scope of administrations. Similarly,
as with other huge advancements in innovation, numerous merchants have grabbed the
expression cloud and are utilizing it for items that sit outside of the basic definition. Since
the cloud is an expansive accumulation of administrations, associations can pick where,
when, and how they utilize cloud computing.

The cloud computing services can be categorized as follows:

e SaaS: These are baked applications that are ready to be grasped by end users

e PaaS: These are a collection of tools and services that are useful for
users/developers who want to either build their application or quickly host them
directly to production without caring about the underlying hardware

e TaaS: This is for customers who want to build their own business model and
customize it

[7]

Introducing Cloud Native Architecture and Microservices

Cloud computing, as a stack, can be explained as follows:

¢ Cloud computing is often referred to as stack, which is basically a wide range of
services in which each service is built on top of another under a common term,
such as cloud

e The cloud computing model is considered as a collection of different configurable
computing resources (such as servers, databases, and storage), which
communicate with each other, and can be provisioned with minimal supervision

The following diagram showcases the cloud computing stack components:

Service Provider

Compute/Storage/Network

o
o

Customer/Client

Let's understand cloud computing components in detail, along with their use cases.

[8]

Introducing Cloud Native Architecture and Microservices

Software as a Service
The following are the key points that describe SaaS:

Software as a Service (SaaS) offers users the ability to access software hosted on
service provider premises, which is provided as a service over the internet
through a web browser by a provider. These services are based on subscriptions,
and are also referred to as on-demand software.

SaaS-offering companies include the Google Docs productivity suite, Oracle
CRM (Customer Relationships Management), Microsoft and their Office 365
offering, and Salesforce CRM and QuickBooks.

Saa$S can be further categorized as a vertical SaaS that focuses on the needs of
specific industries, such as healthcare and agriculture, or a horizontal SaaS that
focuses on the software industry, such as human resources and sales.

Saa$ offerings are, basically, for organizations that quickly want to grasp existing
applications that are easy to use and understand, even for a non-technical person.
Based on the organization's usage and budget, enterprises to select support plans.
Additionally, you can access these SaaS applications from anywhere around the
globe, and from any device with the internet enabled.

Platform as a Service
The following are the key points that describe PaaS:

In PaaS offerings, the organization/enterprise need not worry about hardware
and software infrastructure management for their in-house applications

The biggest benefits of PaaS are for the development teams (local or remote),
which can efficiently build, test, and deploy their applications on a common
framework, wherein, the underlying hardware and software is managed by the
Paa$ service provider

The PaaS service provider delivers the platform, and also provides different
services around the platform

The examples of PaaS providers include Amazon Web Services (AWS Elastic
Beanstalk), Microsoft Azure (Azure Websites), Google App Engine, and Oracle
(Big Data Cloud Service)

[9]

Introducing Cloud Native Architecture and Microservices

Infrastructure as a Service
The following are the key points that describe IaaS:

Unlike SaaS offerings, in IaaS, the customer is provided with IT resources, such as
bare metal machines to run applications, hard disk for storage, and network cable
for network capability, which they can customize based on their business model.

In Iaa$ offerings, since the customer has full access to their infrastructure, they
can scale their IT resources based on their application requirement. Also, in IaaS
offerings, the customer has to manage the security of the application/resources,
and needs to build disaster recovery models in case of sudden failures/crashes.

In IaaS, services are on an on-demand basis, where the customer is charged on
usage. So, it's the customer's responsibility to do cost analysis against their
resources, which will help restrict them from exceeding their budget.

It allows customers/consumers to customize their infrastructure based on the
requirements of the application, then tear down the infrastructure and recreate it
again very quickly and efficiently.

The pricing model for IaaS-based services is basically on-demand, which means
you pay as you go. You are charged as per your usage of resources and the
duration of the usage.

Amazon Web Services (offering Amazon Elastic Compute Cloud (Amazon EC2)
and Amazon Simple Storage Service (Amazon S3)) was the first out of the gate
in this cloud offering; however, players such as Microsoft Azure (virtual
machine), Rackspace (virtual cloud servers) and Oracle (bare metal cloud
services) have also made a name for themselves.

The cloud native concepts

Cloud native is structuring teams, culture, and technology to utilize automation and
architectures to manage complexity and unlock velocity.

[10]

Introducing Cloud Native Architecture and Microservices

The cloud native concept goes beyond the technologies with which it is associated. We need
to understand how companies, teams, and people are successful in order to understand
where our industry is going.

Currently, companies such as Facebook and Netflix have dedicated a large amount of
resources working towards cloud native techniques. Even now, small and more flexible
companies have realized the value of these techniques.

With feedback from the proven practices of cloud native, the following are some of the
advantages that come to light:

¢ Result-oriented and team satisfaction: The cloud native approach shows the way
to break a large problem into smaller ones, which allows each team to focus on
the individual part.

¢ Grunt work: Automation reduces the repetitive manual tasks that cause
operations pain, and reduces the downtime. This makes your system more
productive, and it gives more efficient outcomes.

¢ Reliable and efficient application infrastructure: Automation brings more
control over deployment in different environments--whether it is development,
stage, or production--and also handles unexpected events or failures. Building
automation not only helps normal deployment, but it also makes deployment
easy when it comes to a disaster recovery situation.

¢ Insights over application: The tools built around cloud native applications
provide more insights into applications, which make them easy to debug,
troubleshoot, and audit.

e Efficient and reliable security: In every application, the main concern is toward
its security, and making sure that it is accessible via required channels with
authentication. The cloud native approach provides different ways for the
developer to ensure the security of the application.

¢ Cost-effective system: The cloud approach to managing and deploying your
application enables efficient usage of resources, which also includes application
release and, hence, makes the system cost effective by reducing the wastage of
resources.

[11]

Introducing Cloud Native Architecture and Microservices

Cloud native - what it means and why it matters?

Cloud native is a broad term which makes use of different techniques, such as
infrastructure automation, developing middleware, and backing services, which are
basically a part of your application delivery cycle. The cloud native approach includes
frequent software releases that are bug-free and stable, and can scale the application as per
the business requirement.

Using the cloud native approach, you will be able to achieve your goal toward application
building in a systematic manner.

The cloud native approach is much better than the legacy virtualization-oriented
orchestration, which needs a lot of effort to build an environment suitable for development,
and then, a far more different one for the software delivery process. An ideal cloud native
architecture should have automation and composition functionalities, which work on your
behalf. These automation techniques should also be able to manage and deploy your
application across different platforms and provide you with results.

There are a couple of other operation factors that your cloud native architecture should be
able to identify, such as steady logging, monitoring application and infrastructure in order
to make sure the application is up and running.

The cloud native approach really helps developers build their application across different
platforms using tools such as Docker, which is lightweight and easy to create and destroy.

The cloud native runtimes

Containers are the best solutions for how to get software to run reliably when moved from
one computing environment to another. This could be from one developer machine to the
stage environment into production, and perhaps from a physical machine to a virtual
machine in a private or public cloud. Kubernetes has become synonymous with container
services, and is getting popular nowadays.

[12]

Introducing Cloud Native Architecture and Microservices

With the rise of cloud native frameworks and an increase in the applications built around it,
the attributes of container orchestration have received more attention and usage. Here is
what you need from a container runtime:

Managing container state and high availability: Be sure to maintain the state
(such as create and destroy) of containers, specifically in production, as they are
very important from a business perspective, and should be able to scale as well,
based on business needs

Cost analysis and realization: Containers give you control over resource
management as per your business budget, and can reduce costs to a large extent
Isolated environment: Each process that runs within a container should remain
isolated within that container

Load balancing across clusters: Application traffic, which is basically handled by
a cluster of containers, should be redirected equally within the containers, which
will increase the applications response and maintain high availability
Debugging and disaster recovery: Since we are dealing with the production
system here, we need to make sure we have the right tools to monitor the health
of the application, and to take the necessary action to avoid downtime and
provide high availability

Cloud native architecture

The cloud native architecture is similar to any application architecture that we create for a
legacy system, but in the cloud native application architecture, we should consider a few
characteristics, such as a twelve-factor application (collection of patterns for app
development), microservices (decomposition of a monolithic business system into
independent deployable services), self-service agile infrastructure (self-service platform),
API-based collaboration (interaction between services via API), and antifragility (self-
realizing and strengthening the application).

First, let's discuss what is microservices all about?

[13]

Introducing Cloud Native Architecture and Microservices

Microservices is a broader term that breaks large applications into smaller modules to get
them developed and make them mature enough for release. This approach not only helps to
manage each module efficiently, but it also identifies the issue at the lower level itself. The
following are some of the key aspects of microservices:

e User-friendly interfaces: Microservices enable a clear separation between
microservices. Versioning of microservices enables more control over APIs, and it
also provides more freedom for both the consumers and producers of these
services.

¢ Deployment and management of APIs across the platform: Since each
microservice is a separate entity, it is possible to update a single microservice
without making changes to the others. Also, it is easier to roll back changes for a
microservice. This means the artifacts that are deployed for microservices should
be compatible in terms of API and data schemas. These APIs must be tested
across different platforms, and the test results should be shared across different
teams, that is, operation, developers, and so on, to maintain a centralized control
system.

¢ Flexibility in application: Microservices that are developed should be capable of
handling the request and must respond back, irrespective of the kind of request,
which could be a bad input or an invalid request. Also, your microservice should
be able to deal with an unexpected load request and respond appropriately. All
of these microservices should be tested independently, as well as with
integration.

e Distribution of microservices: It's better to split the services into small chunks of
services so that they can be tracked and developed individually and combined to
form a microservice. This technique makes microservices development more
efficient and stable in manner.

[14]

Introducing Cloud Native Architecture and Microservices

The following diagram shows a cloud native application's high-level architecture:

I 1
| i
)
i i
| |
. : ul : .

Client : Service : Service
| | _
1 1 A
I I
i i
b V_\
i i
E : » Service
i i
| |
! Frontend ! Backend

The application architecture should ideally start with two or three service, try to expand it
with further versions. It is very important to understand application architecture, as it may
need to integrate with different components of the system, and it is possible that a separate
team manages those components when it comes to large organizations. Versioning in
microservices is vital, as it identifies the supported method during the specified phase of
development.

Are microservices a new concept?

Microservices has been in the industry for a very long time now. It is another way of
creating a distinction between the different components of a large system. Microservices
work in a similar fashion, where they act as a link between the different services, and
handle the flow of data for a particular transaction based on the type of requests.

[15]

Introducing Cloud Native Architecture and Microservices

The following diagram depicts the architecture of microservices:

&

Website T

i\

Mobile App

\t‘ Website URL \

Database

B

Desktop App K /

Network

Why is Python the best choice for cloud native
microservices development?

Why do I choose Python, and recommend it to as many people as possible? Well, it comes
down to the reasons explained in the upcoming subsections.

[16]

Introducing Cloud Native Architecture and Microservices

Readability

Python is highly expressive and an easy-to-learn programming language. Even an amateur
can easily discover the different functionalities and scope of Python. Unlike other
programming languages, such as Java, which focus more on parenthesis, brackets, commas,
and colons, Python let's you spend more time on programming and less time on debugging
the syntax.

Libraries and community

Python's broad range of libraries is very portable over different platforms, such as Unix,
Windows, or OS X. These libraries can be easily extended based on your
application/program requirement. There is a huge community that works on building these
libraries and this makes it the best fit for business use cases.

As far as the Python community is concerned, the Python User Group (PUG) is a
community that works on the community-based development model to increase the
popularity of Python around the globe. These group members give talks on Python-based
frameworks, which help us build large systems.

Interactive mode

The Python interactive mode helps you debug and test a snippet of code, which can later be
added as a part of the main program.

Scalable

Python provides better structure and concept, such as modules, to maintain large programs
in a more systematic manner than any other scripting language, such as shell scripting.

Understanding the twelve-factor app

Cloud native applications fit in with an agreement intended to augment versatility through
predictable practices. This application maintains a manifesto of sorts called the twelve-
factor app. It outlines a methodology for developers to follow when building modern web-
based applications. Developers must change how they code, creating a new contract
between the developers and the infrastructure that their applications run on.

[17]

Introducing Cloud Native Architecture and Microservices

The following are a few points to consider when developing a cloud native application:

Use an informative design to increase application usage with minimal time and
cost to customers using automation

Use application portability across different environments (such as stage and
production) and different platforms (such as Unix or Windows)

Use application suitability over cloud platforms and understand the resource
allocation and management

Use identical environments to reduce bugs with continuous delivery/deployment
for maximum agility of software release

Enable high availability by scaling the application with minimal supervision and
designing disaster-recovery architectures

Many of the twelve-factors interact with each other. They focus on speed, safety, and scale
by emphasizing on declarative configuration. A twelve-factor app can be described as

follows:

Centralized code base: Every code that is deployed is tracked in revision control,
and should have multiple instances deployed on multiple platforms.

Dependencies management: An app should be able to declare the dependencies,
and isolate them using tools such as Bundler, pip, and Maven.

Defining configuration: Configurations (that is, environment variables) that are
likely to be different in different deployment environments (such as
development, stage, and production) should be defined at the operating-system
level.

Backing services: Every resource is treated as a part of the application itself.
Backing services such as databases and message queues should be considered as
an attached resource, and consumed equally in all environments.

Isolation in build, release, and run cycle: This involves strict separation between
build artifacts, then combining with configuration, and then starting one or more
instances from the artifact and configuration combination.

[18]

Introducing Cloud Native Architecture and Microservices

e Stateless processes: The app should execute one or more instances/processes (for
example, master/workers) that share nothing.

e Services port binding: The application should be self-contained, and if any/all
services need to be exposed, then it should be done via port binding (preferably
HTTP).

¢ Scaling stateless processes: The architecture should emphasize stateless process
management in the underlying platform instead of implementing more
complexity to the application.

¢ Process state management: Processes should scale up very quickly and shut
down gracefully within a small time period. These aspects enable rapid
scalability, deployment of changes, and disaster recovery.

¢ Continuous delivery/deployment to production: Always try to keep your
different environments similar, whether it is development, stage, or production.
This will ensure that you get similar results across multiple environments, and
enable continuous delivery from development to production.

* Logs as event streams: Logging is very important, whether it is platform level or
application level, as this helps understand the activity of the application. Enable
different deployable environments (preferably production) to collect, aggregate,
index, and analyze the events via centralized services.

¢ Ad hoc tasks as on-off processes: In the cloud native approach, management
tasks (for example, database migration) that run as a part of a release should be
run as one-off processes into the environment as opposed to the regular app with
long-running processes.

Cloud application platforms such as Cloud Foundry, Heroku, and Amazon Beanstalk are
optimized for deploying twelve-factor apps.

Considering all these standards and integrating applications with steady engineering
interfaces, that is, handling stateless outline design, makes disseminated applications that
are cloud prepared. Python revolutionized application systems with its obstinate, tradition-
over-setup way to deal with web improvements.

[19]

Introducing Cloud Native Architecture and Microservices

Setting up the Python environment

As we will demonstrate throughout this book, having the right environment (local or for
your automated builds) is crucial to the success of any development project. If a
workstation has the right tools, and is set up properly, developing on that workstation can
feel like a breath of fresh air. Conversely, a poorly set up environment can suffocate any
developer trying to use it.

The following are the prerequisite accounts that we require in the later part of the book:

¢ A GitHub account needs to be created for source code management. Use the
article on the following link to do so:

https://medium.com/appliedcode/setup—github-account-9abec918bccl

e AWS and Azure accounts are required for application deployment. Use the
articles given on the following links to create these:

o AWS:
https://medium.com/appliedcode/setup—aws—-account—-1727ce893

53e

e Azure: https://medium.com/appliedcode/setup-microsoft-azu
re—account-cbd635ebfl4b

Now, let's set up some of the tools that we will need during our development project.

Installing Git

Git (https://git-scm.com) is a free and open source distributed, version control system
designed to handle everything, ranging from small to very large projects, with speed and
efficiency.

[20]

https://medium.com/appliedcode/setup-github-account-9a5ec918bcc1
https://medium.com/appliedcode/setup-aws-account-1727ce89353e.
https://medium.com/appliedcode/setup-aws-account-1727ce89353e.
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://git-scm.com

Introducing Cloud Native Architecture and Microservices

Installing Git on Debian-based distribution Linux (such
as Ubuntu)

There are a couple of ways by which you can install Git on a Debian system:

1. Using the Advanced Package Tool (APT) package management tools:

You can use the APT package management tools to update your local package
index. Then, you can download and install the latest Git using the following
commands as the root user:

$ apt-get update -y
$ apt—-get install git -y

The preceding commands will download and install Git on your system.

2. Using the source code, you can do the following:
1. Download the source from the GitHub repository, and compile the
software from the source.

Before you begin, let's first install the dependencies of Git; execute the
following commands as the root user to do so:
$ apt—get update -y

$ apt—get install build-essential libssl-dev
libcurl4—-gnutls—-dev libexpatl-dev gettext unzip -y

2. After we have installed the necessary dependencies, let's go to the Git
project repository (https://github.com/git/git) to download the
source code, as follows:

$ wget https://github.com/git/git/archive/v1.9.1.zip -
Ogit.zip

3. Now, unzip the downloaded ZIP file using the following commands:

$ unzip git.zip
$ cd git-*

4. Now you have to make the package and install it as a sudo user. For
this, use the commands given next:

$ make prefix=/usr/local all
$ make prefix=/usr/local install

The preceding commands will install Git on your system at /usr/local.

[21]

https://github.com/git/git

Introducing Cloud Native Architecture and Microservices

Seting up Git on a Debian-based distribution
Now that we have installed Git on our system, we need to set some configuration so that

the commit messages that will be generated for you contain your correct information.

Basically, we need to provide the name and email in the config. Let's add these values using
the following commands:

$ git config --global user.name "Manish Sethi"
$ git config --global user.email manish@sethis.in

Installing Git on Windows

Let's install Git on Windows; you can download the latest version of Git from the official
website (https://git-scm.com/download/win). Follow the steps listed next to install Git on
a Windows system:

1. Once the . exe file is downloaded, double-click on it to run it. First of all, you will
be provided with a GNU license, as seen in this screenshot:

53:‘

Git 211.1 Setup = || =

Information
Please read the following important information before continuing.

When you are ready to continue with Setup, dick Next,

GNU General Public License

ersion 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundztion, Inc.
£ Temple Place - Suite 330, Boston, MA 02111-1307, USA

E\.nerﬁ:ne is permitted to copy and distribute werbatim copies
this Ticense document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away yvour
freedom to share and change it. By contrast, the GNU General Fublic
lirense iz intended to auarantes vour freedam ta share and channe 7

Mext =]I Cancel

[22]

https://git-scm.com/download/win

Introducing Cloud Native Architecture and Microservices

Click on Next:

Git 2111 Setup (&)= =]

Select Components
Which components should be installed?

Select the components you want to install; dear the components you do not want to
install. Click Mext when you are ready to continue.

[] additional icons
[7] on the Desktop
[] windows Explorer integration
- [7] Git Bash Here
i... [Git GUI Here
[¥] Assodate .git™ configuration files with the default text editor
[¥] Associate .sh files to be run with Bash
[use a TrueType fontin all console windows

Current selection reguires at least 202.6 MB of disk space.

tbos: i gib-For-windows github.iof

< Back][Mext =][Cancel

In the section shown in the preceding screenshot, you will customize your setup
based on tools that are needed, or you can keep it default, which is okay from the
book's perspective.

[23]

Introducing Cloud Native Architecture and Microservices

2. Additionally, you can install Git Bash along with Git; click on Next:

Git 2111 Setup

0
o
&)

Adjusting your PATH environment
How would yvou like to use Git fram the command line?

(@ Use Git from Git Bash only

This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

71 Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You wil be
able to use Git from both Git Bash and the Windows Command Prompt.

71 Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows. tools like "find"” and "sort”. Onky
use this option if you understand the implications.

< Back][Mext =][Cancel]

[24]

Introducing Cloud Native Architecture and Microservices

3. In the section seen in the next screenshot, you can enable other features that come
along with Git packages. Then, click on Next:

Git 2111 Setup == =]

Configuring extra options
Which features would you like to enable?

[¥] Enable file system caching

File system data will be read in bulk and cached in memaory for certain
operations (“core. fscache” is set to “true®). This provides a significant
performance boost,

[¥] Enable Git Credential Manager

The Git Credential Manager for Windows provides secure Git credential storage
for Windows, most notably multi-factor authentication support for Visual Studio
Team Services and GitHub, {requires .MET framework w4.5.1 or or later).

["] Enable symbolic links

Enable symbolic links (requires the SeCreateSymbolicLink permission).
Please note that existing repositories are unaffected by this setting.

= Back l[Mext =][Cancel

4. You can skip the rest of the steps by clicking on Next, and go for the installation
part.

Once you complete the installation, you will be able to see a screen like this:

[25]

Introducing Cloud Native Architecture and Microservices

s \

Git 211.1 Setup = = || &=

Completing the Git Setup Wizard

Setup has finished instaling Git on your computer.

Click Finish to exit Setup.

[7] Launch Git Bash
[wiew Release Motes

Great!! We have successfully installed Git on Windows!!

Using Chocolatey

This is my preferred way to install Git for Windows on Windows 10. It installs the same
package as before, but in one line. If you have not heard of Chocolatey, stop everything, and
go learn a bit more. It can install the software with a single command; you don't have to use
click-through installers anymore!

Chocolatey is very powerful, and I use it in combination with Boxstarter to set up my dev
machines. If you are in charge of setting up machines for developers on Windows, it is
definitely worth a look.

[26]

Introducing Cloud Native Architecture and Microservices

Let's see how you would install Git using Chocolatey. I assume you have Chocolatey
installed (https://chocolatey.org/install) already (it's a one-liner in Command
Prompt). Then, simply open the Administrator Command window, and type this
command:

$ choco install git —-params '"/GitAndUnixToolsOnPath"'

This will install Git and the BASH tools, and add them to your path.

Installing Git on Mac

Before we begin with the Git installation, we need to install command-line tools for OS X.

Installing the command-line tools for OS X

In order to install any developer, you will need to install Xcode
(https://developer.apple.com/xcode/), which is a nearly 4 GB developer suite. Apple
offers this for free from the Mac App Store. In order to install Git and the GitHub setup, you
will need certain command-line tools, which are part of the Xcode development tools.

If you have enough space, download and install Xcode, which is basically a complete
package of development tools.

You will need to create an Apple developer account at developer.apple.com in order to
download command-line tools. Once you have set up your account, you can select the
command-line tools or Xcode based on the version, as follows:

e If you are on OS X 10.7.x, download the 10.7 command-line tools. If you are on
OS X 10.8.x, download the 10.8 command-line tools.

¢ Once it is downloaded, open the DMG file, and follow the instructions to install it.

[27]

https://chocolatey.org/install
https://developer.apple.com/xcode/
http://developer.apple.com

Introducing Cloud Native Architecture and Microservices

Installing Git for OS X

Installing Git on Mac is pretty much similar to how you install it on Windows. Instead of
using the . exe file, we have the dmg file, which you can download from the Git website
(https://git-scm.com/download/mac) for installation as follows:

1. Double-click on the dmg file that got downloaded. It will open a finder with the
following files:

[NON] — Git 2.10.1 Mavericks Intel Universal
git-2.10.1-intel-universal- README.txt VERSION-2.10.1-universal-
mavericks.pkg mavericks

[28]

Introducing Cloud Native Architecture and Microservices

2. Double-click on the package (thatis, git-2.10.1-intel-universal-

mavericks.dmg) file; it will open the installation wizard to install, as seen in the
following screenshot:

@ ‘e Install git-2.10.1-intel-universal-mavericks

Welcome to the git-2.10.1-intel-universal-mavericks Installer

Introduction You will be guided through the steps necessary to install this
software.

Destination Select
Installation Type
Installation

Summary

Continue

[29]

Introducing Cloud Native Architecture and Microservices

3. Click on Install to begin the installation:

@ ‘e Install git-2.10.1-intel-universal-mavericks
Standard Install on “Macintosh HD"

R This will take 54.4 MB of space on your computer.

Destination Select Click Install to perform a standard installation of this software

on the disk “Macintosh HD".
Installation Type

Installation

| Summary

7

Change Install Location...

Go Back Install

[30]

Introducing Cloud Native Architecture and Microservices

4. Once the installation is complete, you will see something like this:

o ‘e Install git-2.10.1-intel-universal-mavericks

The installation was completed successfully.

Introduction
Destination Select
Installation Type

Installation

Summary The installation was successful.

The software was installed.

If you are using OS X 10.8 and haven't already modified your security
settings to allow the installation of third-party applications, you'll need to
make that adjustment before OS X lets you install these tools.

[31]

Introducing Cloud Native Architecture and Microservices

Installing and configuring Python

Now, let's install Python, which we will use to build our microservices. We will be using the
Python 3.x version throughout the book.

Installing Python on a Debian-based distribution (such
as Ubuntu)

There are different ways to install Python on a Debian-based distribution.

Using the APT package management tools

You can use the APT package management tools to update your local package index. Then,
you can download and install the latest Python using the following commands as a root
user:

$ apt-get update -y
$ apt—-get install python3 -y

The following packages will automatically be downloaded and installed, as these are the
prerequisites for Python 3 installation:

libpython3-dev libpython3.4 libpython3.4-dev python3-chardet
python3-colorama python3-dev python3-distlib python3-html5lib

python3-requests python3-six python3-urllib3 python3-wheel python3.4-de

Once the prerequisites are installed, it will download and install Python on your system.

[32]

Introducing Cloud Native Architecture and Microservices

Using source code

You can download the source code from the GitHub repository and compile the software
from the source, as follows:

1. Before you begin, let's first install the dependencies of Git; execute the following
commands as the root user to do so:

$ apt-get update -y

$ apt—-get install build-essential checkinstall libreadline-gplv2-
dev libncursesw5-dev libssl-dev libsqglite3-dev tk-dev libgdbm-
dev libcé6-dev libbz2-dev -y

2. Now, let's download Python (https://www.python.org) using the following
command from Python's official website. You can also download the latest
version in place, as specified:

$ cd /usr/local
$ wget https://www.python.org/ftp/python/3.4.6/Python-3.4.6.tgz

3. Now, let's extract the downloaded package with this command:
$ tar xzf Python-3.4.6.tgz

4. Now we have to compile the source code. Use the following set of commands to
do so:

$ cd python-3.4.6
$ sudo ./configure
$ sudo make altinstall

5. The preceding commands will install Python on your system at /usr/local. Use
the following command to check the Python version:

$ python3 -V
Python 3.4.6

[33]

https://www.python.org

Introducing Cloud Native Architecture and Microservices

Installing Python on Windows

Now, let's see how we can install Python on Windows 7 or later systems. Installation of
Python on Windows is pretty simple and quick; we will be using Python 3 and above,
which you can download from Python's download page
(https://www.python.org/downloads/windows/). Now perform the following steps:

1. Download the Windows x86-64 executable installer based on your system
configuration, and open it to begin the installation, as shown in the following

screenshot:

7. Python 3.5.3 (64-bit) Setup

pgth::{n

windows

(o] = |[=]

Install Python 3.5.3 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

2 Install Now
ChUsers\maniseth. ORADEV\ AppData\Local\Programs\Python'Python35

Includes IDLE, pip and documentation
Creates shortcuts and file associations

= Customize installation
Choose location and features

[¥] Install launcher for all users (recommended)

[¥] Add Python 3.5 to PATH

[34]

https://www.python.org/downloads/windows/

Introducing Cloud Native Architecture and Microservices

2. Next, select the type of installation you want to go with. We will click on Install
Now to go for the default installation, as seen in this screenshot:

® | Python 3.5.3 (64-bit) Setup =]l = [=]

Setup Progress

Installing:

Initializing...

python
for
windows

[35]

Introducing Cloud Native Architecture and Microservices

3. Once the installation is complete, you will see the following screen:

(@ Python 3.5.3 (64-bit) Setup (= = [=]
Setup was successful

Special thanks to Mark Hammond, without whose years of freely
shared Windows expertise, Python for Windows would still be Python
for DOS,

New to Python? Start with the online tutorial and documentation.

pgth{()_n

windows

Great! We have successfully installed Python on Windows.

Installing Python on Mac

Before we begin with the Python installation, we need to install the command-line tools for
OS X. If you have already installed the command-line tools at the time of Git installation,
you can ignore this step.

Installing the command-line tools for OS X

In order to install any developer, you need to install Xcode (https://developer.apple.co
m/xcode/); you will need to set up an account on connect .apple.comto download the
respective Xcode version tools.

[36]

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Introducing Cloud Native Architecture and Microservices

However, there is another way you can install command-line tools using a utility, which
comes along with an Xcode called xcode-select, which is shown here:

% xcode-select —--install

The preceding command should trigger an installation wizard for the command-line tools.
Follow the installation wizard, and you will be able to install it successfully.

Installing Python for OS X

Installing Python on Mac is quite similar to how you install Git on Windows. You can
download the Python package from the official website
(https://www.python.org/downloads/). Proceed with the following steps:

1. Once the Python package is downloaded, double-click on it to begin the
installation; it will show the following pop-up window:

® ‘& Install Python]

Welcome to the Python Installer

This package will install Python 3.5.3 for Mac OS X 10.6 or later.

Introduction

Python for Mac OS X consists of the Python programming language
interpreter, plus a set of programs to allow easy access to it for Mac OS X
users including an integrated development environment IDLE.

IMPORTANT: IDLE and other programs using the tkinter graphical user
interface toolkit require specific versions of the Tel/Tk platform
independent windowing toolkit. Visit https://www.python.org/download/
mac/tcltk/ for current information on supported and recommended
versions of Tcl/Tk for this version of Python and Mac OS X.

Continue

[371]

https://www.python.org/downloads/

Introducing Cloud Native Architecture and Microservices

2. The next step will be about the release note and the respective Python version

information:
@ ‘& Install Python
Important Information
This package will install Python 3.5.3 for Mac OS X 10.6 or later for the
Introduction following architecture(s): i386, x86_64.

Which installer variant should | use?

Python.org provides two installer variants for download: one that installs a
64-bit/32-bit Intel Python capable of running on Mac OS X 10.6 (Snow
Leopard) or later; and one that installs a 32-bit-only (Intel and PPC)
Python capable of running on Mac OS X 10.5 (Leopard) or later. This
ReadMe was installed with the 70.6 or later variant. Unless you are
installing to an 10.5 system or you need to build applications that can run
on 10.5 systems, use the 10.6 variant if possible. There are some
additional operating system functions that are supported starting with
10.6 and you may see better performance using 64-bit mode. By default,
Python will automatically run in 64-bit mode if your system supports it.
Also see Certificate verification and OpenSSL below. The Pythons
installed by these installers are built with private copies of some third-
party libraries not included with or newer than those in OS X itself. The
list of these libraries varies by installer variant and is included at the end
of the License.rtf file.

Print... Save... Go Back Continue

[38]

Introducing Cloud Native Architecture and Microservices

3. Next, you will need to Agree with the license, which is mandatory for
installation:

‘e Install Python

To continue installing the software you must agree to the terms of
the software license agreement.

)R
Intf Click Agree to continue or click Disagree to cancel the installation and
Re: quit the Installer.
Lic

Read License Disagree Agree

o

XZ 5.0.5
NCurses 5.9
SQLite 3.8.11

For licenses and acknowledgements for these and other third-party

software incorporated in this Python distribution, please refer to the on-
line documentation here.

Print... Save... Go Back Continue

[39]

Introducing Cloud Native Architecture and Microservices

4. Next, it will show you the installation-related information, such as the disk
occupied and the path. Click on Install to begin:

K J & Install Python
Standard Install on “Macintosh HD"

This will take 97.2 MB of space on your computer.

Introduction

Click Install to perform a standard installation of this software
on the disk “Macintosh HD".

Change Install Location...

Customize Go Back Install

[40]

Introducing Cloud Native Architecture and Microservices

5. Once the installation is complete, you will see the following screen:

@ w Install git-2.10.1-intel-universal-mavericks

The installation was completed successfully.

Introduction

Destination Select

¢ Installation Type

o Installation

Summary The installation was successful.

The software was installed.

(-] 5

—
L]

T

6. Use the following command to see whether the Python version is installed:

% python3 -V
Python 3.5.3

Great!! Python is successfully installed.

[41]

Introducing Cloud Native Architecture and Microservices

Getting familiar with the GitHub and Git
commands

In this section, we will go through a list of Git commands, which we will be using
frequently throughout the book:

e git init: This command initializes your local repository once when you are setting
it up for the first time

e git remote add origin <server>: This command links your local <indexentry
content="Git command:git remote add origin " dbid="164250"
state="mod">directory to the remote server repository so that all the changes
pushed are saved in the remote repository

e git status: This command lists the files/directories that are yet to be added, or are
modified and need to be committed

o git add * or git add <filename>: This command adds files/directories so that
<indexentry content="Git command:git add * or git add "
dbid="164250" state="mod">they can be tracked, and makes them ready to
be committed

e git commit -m "Commit message": This command helps you commit your track
changes in the local machine and generate the commit ID by which the updated
code can be identified

e git commit -am "Commit message": The only difference between the previous
command and this command is that this opens a default editor to add the commit
message based on an operating system such as Ubuntu (Vim) or Windows
(Notepad++) after adding all the files to stage

e git push origin master: This command pushes the last committed code from the
local directory to the remote repository

Test everything to make sure our environment works.

Here we go. We have installed both Git and Python in the last section, which are needed to
begin with building microservices. In this section, we will focus on testing the installed
packages and try to get familiar with them.

The first thing we can do is to exercise the Git command, which fetches an external Python
code from a repository (usually GitHub) over HTTPs, and copies it into our current
workspace in the appropriate directory:

$ git clone https://github.com/PacktPublishing/Cloud-Native-—
Python.git

[42]

Introducing Cloud Native Architecture and Microservices

The preceding command will create a directory named Cloud-Native-Python on your
local machine; switch to the Cloud-Native-Python/chapterl path from the current
location.

We will need to install the requirements of the apps that are needed to run it. In this case,
we just need the Flask module to be available:

$ cd hello.py
$ pip install requirements.txt

Here, Flask works as the web server; we will understand more about it in detail in the next
chapter.

Once it is installed successfully, you can run the app using the following command:

$ python hello.py
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

I think we are good to see the output, which is as follows:

$ curl http://0.0.0.0:5000/
Hello World!

If you see this output, then our Python development environment is correctly set up.

Now it's time to write some Python code!

Summary

In this chapter, we began with exploring the cloud platform and the cloud computing stack.
During this chapter, you learned what the different twelve-factor apps methodologies are,
and how they can help develop microservices. Lastly, you got to know about what kind of
ideal setup environment a developer machine should have to create or get started with
application creation.

In the next chapter, we will start building our microservices by creating backend REST
APIs, and testing with the API call or using the Python framework as well.

[43]

Building Microservices in
Python

Now, since you understand what microservices are and, hopefully, have a sense of their key
benefits, I'm sure you are eager to begin building them. In this chapter, we will immediately
start writing REST APIs, which collectively work as microservices.

The topics we will cover in this chapter are as follows:

e Building a REST API
e Testing an API

Python concepts

Let's first understand a few concepts of Python, which we will use in this book.

Modules

A module basically allows you to logically organize your programming code. It is similar to
any other Python program. They are needed in scenarios where we need only a bit of code
to be imported instead of the entire program. A module can be a combination of one or
multiple functions classes, and many more. We will use a couple of inbuilt functions, which
are a part of the Python library. Also, wherever needed, we will create our own modules.

Building Microservices in Python

The following

example code showcases the structure of modules:

#myprogram.py

EXAMPLE PYTHON MODULE
Define some variables:
numberone = 1

age =

def
def p

78

ine some functions
rinthello () :

print "hello"

def t

imesfour (input) :

print input * 4

define a class

class
def

def

house:

__init_ (self):

self.type = raw_input ("What type of house? ")
self.height = raw_input ("What height (in feet)? ")
self.price = raw_input ("How much did it cost? ")
self.age = raw_input ("How old is it (in years)? ")

print_details (self):

print "This house is a/an " + self.height + " foot",

print self.type, "house, " + self.age, "years old and costing\
" + self.price + " dollars."

You can import the preceding module using the following command:

import

Functio

myprogram

ns

A function is a block of organized, self-contained programs that perform a specific task,
which you can incorporate into your own larger programs. They are defined as follows:

function

def
do

functionname () :
something

return

[45]

Building Microservices in Python

These are a few points to remember:

e Indentation is very important in Python programs

¢ By default, parameters have a positional behavior, and you need to inform them
in the same order that they were defined in

Please see the following code snippet example, which showcases functions:

def display (name):

#This prints a passed string into this function
print ("Hello" + name)
return;

You can call the preceding function as follows:

display ("Manish")
display ("Mohit")

The following screenshot shows the execution of the preceding display function:

root@packtpub:/vagrant/github# cat function.py

def display (name):
#This prints a passed string into this function
print ("Hello" + name)
return;

display(" Mohit ™)

display(" Manish ™)
root@packtpub:/vagrant/github# python function.py
Hello Mohit

Hello Manish

Note that if you have more than one Python version installed on your
system, you need to use Python 3 instead of Python, which uses the
default version of Python (generally, 2.7 x).

[46]

Building Microservices in Python

Modeling microservices
In this book, we will develop a full-fledged working web app that works independently.

Now, since we have a basic understanding of Python, let's get started with modeling our
microservices and understanding the application workflow.

The following diagram shows the microservices architecture and application workflow:

aa

Ul Ul

JSOW JSON

API Gateway

Client

JSON
JSON

REST REST

API API
User Tweets

Management Management

Database Database

[47]

Building Microservices in Python

Building microservices

In this book, we will use Flask as a web framework to build our microservices. Flask is a
powerful web framework, which is easy to learn and simple to use. Additionally, in Flask,
we need a little boilerplate code to get a simple app up and running.

Since we will create our application using the twelve-factor app concept, we will begin by
ensuring that we have a centralized code base. By now, you should know how to create a
GitHub repository. If not, make sure you create it as per the blogpost link provided in
Chapter 1, Introducing Cloud Native Architecture and Microservices. We will be pushing the
code regularly to the repository.

Assuming you have created the repository during the course of this book, we will use the
GitHub repository (https://github.com/PacktPublishing/Cloud-Native-Python.git).

So, let's set up our local directory in sync with the remote repository. To ensure that we are
in the app directory, use the following commands:

$ mkdir Cloud-Native-Python # Creating the directory

$ cd Cloud-Native-Python # Changing the path to working directory
$ git init . # Initialising the local directory

$ echo "Cloud-Native-Python" > README.md # Adding description of
repository

$ git add README.md # Adding README.md

$ git commit —am "Initial commit" # Committing the changes

$ git remote add origin
https://github.com/PacktPublishing/Cloud-Native-Python.git # Adding to
local repository

$ git push -u origin master # Pushing changes to remote repository.

You will see the following output:

root@packtpub:~# mkdir Cloud-Native-Python

root@acktpub:~# cd Cloud-Native-Python
root@packtpub:~/Cloud-Native-Python# git init .

Initialized empty Git repository in /root/Cloud-Native-Python/.git/
root@packtpub:~/Cloud-Native-Python# echo "Cloud-Native-Python" > README.md
root@packtpub:~/Cloud-Native-Python# git add README.md
root@acktpub:~/Cloud-Native-Python# git commit -am "Initial commit"

[master (root-commit) 3ff0@dl] Initial commit

1 file changed, 1 insertion(+)

create mode 100644 README.md

root@acktpub:~/Cloud-Native-Python# git remote add origin https://github.com/PacktPublishing/Cloud-Native-Python.git
root@packtpub:~/Cloud-Native-Python# git remote -v

origin https://github.com/PacktPublishing/Cloud-Native-Python.git (fetch)

origin https://github.com/PacktPublishing/Cloud-Native-Python.git (push)

[48]

https://github.com/PacktPublishing/Cloud-Native-Python.git

Building Microservices in Python

We have successfully pushed our first commit to the remote repository; we will keep doing
so in a similar fashion till we reach a certain milestone in building microservices, as well as
the application.

Now, we need to install a file-based database, such as SQLite version 3, which will work as
the datastore for our microservices.

To install SQLite 3, use the following command:
$ apt—-get install sqglite3 libsqglite3-dev -y

We can now create and use (source) a virtualenv environment, which will isolate the
local app's environment from the global site-packages installations. If virtualenv is not
installed, you can install it using the following command:

$ pip install virtualenv
Now create virtualenv as follows:

$ virtualenv env —-—no-site-packages —--python=python3
$ source env/bin/activate

We should see the output of the preceding command as shown in the following screenshot:

oot@pacipuD: [ragrantgiun/ s oo
root@packtpub: /vagrant/github/flask-microservices-app# virtualenv env --no-site-packages --python=python3
Running virtualenv with interpreter /usr/bin/python3

Using base prefix '/usr

New python executable in /vagrant/github/flask-microservices-app/env/bin/python3

Also creating executable in /vagrant/github/flask-microservices-app/env/bin/python

Installing setuptools, pip, wheel...done.

root@packtpub: /vagrant/github/flask-microservices-app# source env/bin/activate

(env) root@packtpub:/vagrant/github/flask-microservices-app# python
Python 3.4.3 (default, Oct 14 2015, 20:28:29)

[GCC 4.8.4] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

After the virtualenv setup, currently, we need one dependency in our virtualenv
environment that needs to be installed. Use the following command to add one package
dependency into requirements.txt:

$ echo "Flask==0.10.1" >> requirements.txt

In the future, if any more dependencies are needed as part of the application, they will go
inside the requirements.txt file.

[49]

Building Microservices in Python

Let's use the requirements file to install the dependencies into the virtualenv
environment as follows:

$ pip install -r requirements.txt

Now that we have the dependencies installed, let's create a file, app . py, with the following
contents:

from flask import Flask
app = Flask(__name__)

if name == "_ _main__ ":

app.run (host='0.0.0.0"', port=5000, debug=True)

The preceding code is the basic structure to run an application using Flask. It basically
initializes the F1lask variable and runs on port 5000, which is accessible from anywhere
(0.0.0.0).

Now, let's test the preceding code and see if everything is working fine.
Execute the following command to run the application:
$ python app.py

We should see the output of the preceding command as shown in the following screenshot:

root@packtpub: /vagrant/github)flask-microsarvices-app
(env) root@packtpub:/vagrant/github/flask-microservices-app# cat app.py
from flask import Flask

app = Flask(__name__)

if __name__ == "__main__":
app.runChost="0.0.0.0", port=5000, debug=True)
(env) root@packtpub:/vagrant/github/flask-microservices-app# python app.py
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat

* Debugger is active!
* Debugger pin code: 267-323-539

[50]

Building Microservices in Python

At this point in time, before we start building RESTful APIs, we need to decide what will be
our root URL to access the service, which will further decide the sub URI for the different
methods. Consider the following example:

http://[hostname] /api/vl/.

Since, in our case, we will be using a local machine, hostname can be Localhost with port,
which is, by default, 5000 for a Flask application. So, our root URL will be as follows:

http://localhost:5000/api/vl/.

Now, let's decide the resources on which different actions will be performed, and which
will be exposed by this service. In this case, we will create two resources: users and tweets.

Our users and info resource will use the HTTP methods as follows:

HTTP URI Actions
Method
GET http://localhost:5000/api/vl/info This responds back

with the version

GET http://localhost:5000/api/vl/users This responds with
the user list

GET http://localhost:5000/api/vl/users/[user_id] [The response will be
the user details of the
specified user_id

POST http://localhost:5000/api/vl/users This resource will
create new users in
the backend server
with values from the
object passed

DELETE |http://localhost:5000/api/vl/users This resource will
delete the user with
the specified
username passed in
JSON format

[51]

Building Microservices in Python

PUT http://localhost:5000/api/vl/users/ [user_id] | This resource
updates the user
information of the
specific user_id
based on the JSON
object passed as part
of the API call.

Using the client, we will perform actions against resources such as add, remove, modify,
and many more.

For the scope of this chapter, we will take a file-based database, such as SQLite 3, which we
already installed earlier.

Let's go and create our first resource, which is /api/v1/info, and show the available
versions and their release details.

Before that, we need to create an apirelease table schema, as defined in SQLite 3, which
will contain information about the API version release. This can be done as follows:

CREATE TABLE apirelease (

buildtime date,

version varchar (30) primary key,

links varchar2(30), methods varchar2(30));

Once it is created, you can add records into SQLite 3 for our first version (v1) using the
following command:

Insert into apirelease values ('2017-01-01 10:00:00', "wv1",
"/api/vl/users", "get, post, put, delete");

Let's define the route /api/v1/info and function in app . py, which will basically handle
the RESTful call on the /api/v1/info route. This is done as follows:

from flask import Jjsonify
import json
import sqglite3
@Qapp.route ("/api/vl/info")
def home_index () :
conn = sqglite3.connect ('mydb.db")

print ("Opened database successfully");
api_list=[]

cursor = conn.execute ("SELECT buildtime, version,
methods, links from apirelease")

for row in cursor:

[52]

Building Microservices in Python

a_dict = {}
a_dict['version'] = row[0]
a_dict['buildtime'] = row[1l]
a_dict['methods'] = row[2]
a_dict['links'] = row[3]
api_list.append(a_dict)

conn.close ()

return jsonify ({'api_version': api_list}), 200

Now that we have added a route and the handle for it, let's make a RESTful call on
http://localhost:5000/api/v1/info, as shown in this screenshot:

root@packtpub: /vagrant/github/flask-microservices-app
root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/vl/info -v
* Hostname was NOT found in DNS cache

* Trying ::1...

* connect to ::1 port 5000 failed: Connection refused

* Trying 127.0.0.1...

Connected to localhost (127.0.0.1) port 5000 (#0)

GET /api/vl/info HTTP/1.1

User-Agent: curl/7.35.0

Host: localhost:5000

Accept: */*

HTTP 1.0, assume close after body
HTTP/1.0 200 OK

Content-Type: application/json
Content-Length: 177

Server: Werkzeug/0.11.15 Python/3.4.3
Date: Mon, 27 Feb 2017 12:18:35 GMT

"api_version": [

"buildtime": "2017-01-01 10:00:00",
"links" pi/v1l/users",
"methods": "get, post, put, delete",
"version": "v1"
}
]
* Closing connection @
}root@packtpub:/vagrant/github/flask-microservices-app# I

Awesome! It works!!

[53]

Building Microservices in Python

Let's move on to the /api/v1/users resource, which will help us perform various actions
on the user's records.

We can define a user as having the following fields:

e id: This is a unique identifier for users (Numeric type)

e username: This is a unique identifier or handler for users for authentication
(String type)

e emailid: This is the user's email (String type)

e password: This is the user's password (String type)

e full_name: This is the full name of the user (String type)

In order to create the user's table schema in SQLite, use the following command:

CREATE TABLE users (

username varchar2 (30),

emailid varchar2(30),

password varchar2(30), full_name varchar (30),
id integer primary key autoincrement);

Building resource user methods

Let's define our GET methods for user resources.

GET /api/v1/users

The GET/api/v1/users method shows the list of all users.

Let's create an /api/v1/users route by adding the following code snippet to app . py:

@app.route ('/api/vl/users', methods=['GET'])
def get_users|():
return list_users()

Now that we have added the route, we need to define the 1ist_users () function, which
will connect with the database to get you the complete list of users. Add the following code

to app.py:

def list_users():

conn = sqglite3.connect ('mydb.db"')

print ("Opened database successfully");
api_list=[]

[54]

Building Microservices in Python

cursor = conn.execute ("SELECT username, full_name,
email, password, id from users")
for row in cursor:
a_dict = {}
]

a_dict['username'] = row[0]
a_dict['name'] = row[1]
a_dict['email'] = row[2]
a_dict['password'] = row|[3]
a_dict['id'] = row[4]

api_list.append(a_dict)
conn.close ()
return jsonify ({'user_list': api_1list})

Now that we have added the route and the handle for it, let's test check the
http://localhost:5000/api/vl/users URL as follows:

root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v1/users
{
"user_list": [

{

"email": "manishest@gmail.com",
"id": 1,

"name": "Manish",

"password' manish123",

"username": "manish123"
}

]
}root@packtpub:/vagrant/github/flask-microservices-app# I

GET /api/v1/users/[user_id]

The GET/api/v1/users/ [user_id] method shows the user details defined by user_id.

Let's create the route for preceding a GET request into the app . py file as follows:
@app.route ('/api/vl/users/<int:user_id>', methods=['GET'])

def get_user (user_id):
return list_user (user_id)

[551]

Building Microservices in Python

As you can see in the preceding code, we call the 1ist_user (user_id) route into the
list_user (user) function, which is not yet defined in app . py. Let's define it to get the
details of the specified user, as follows, in the app . py file:

def list_user (user_id):
conn = sqglite3.connect ('mydb.db")
print ("Opened database successfully");
api_list=[]
cursor=conn.cursor ()
cursor.execute ("SELECT * from users where id=?", (user_id,))
data = cursor.fetchall ()
if len(data) != O0:
user = {}
user['username'] = data[0][0]
user['name'] = data[0][1]
user['email'] = datal[0][2]
user|['password'] = datal0] [3]
user['id'] = data[0][4]
conn.close ()
return Jjsonify(a_dict)

Now that we've added the 1ist_user (user_id) function, let's test it out and see if
everything is working fine:

vagrantfganitase i oo
@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v1/users/2

<!DOCTYPE HTML PUBLIC /W3C//DTD HTML 3.2 Final//EN">

<title>404 Not Found</title>

<h1>Not Found</h1l>

<p>The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.</p>

root@packtpub:/vagrant/github/flask-microservices-app# I

[561]

Building Microservices in Python

Oops! It seems the ID is not present; usually, Flask applications respond with an HTML
message with a 404 error if the ID is not present. Since this is a web service application, and
we are getting a response in JSON for other APIs, we need to write handler for the 404
error so that, instead of the HTML response, it should respond back in JSON, even for
errors. For example, see the following code for 404 error handling. Now, the server will
respond with proper messages which are part of the code, as follows:

from flask import make_response

@app.errorhandler (404)

def resource_not_found(error) :
return make_response (jsonify ({'error':
'Resource not found!'}), 404)

root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v1/users/2
{

"error": "Resource not found!"
}root@packtpub:/vagrant/github/flask-microservices-app# I

Additionally, you can add the abort library from Flask, which is basically for calling
exceptions. Similarly, you can create multiple error handlers for different HTTP error codes.

Now that our GET methods are working fine, we will go forward and write the POST
method, which is similar to adding new users to the users list.

There are two methods to pass the data into the POST method, which are as follows:

¢ JSON: In this approach, we pass the JSON record in the form of an object as part
of the request. The RESTful API call would look like this:

curl -i -H "Content-Type: application/json" -X POST -d
{"fieldl":"value"} resource_url

¢ Parameterized: In this approach, we pass the values of the record as parameters,
as follows:

curl -i -H "Content-Type: application/json" -X POST
resource_url?fieldl=vall&field2=val2

[571

Building Microservices in Python

In the JSON method, we provide the input data in the form of json, and we read it in the
same way. On the other hand, in the parameterized method, we provide the input data (that
is, username, and so on) in the form of URL parameters, and read data in the same way.

Also note that the API creation at the backend will vary with the type of API call being
made.

POST /api/lv1/users

In this book, we go with the first approach to the POST method. So, let's define our route for
the post method in app . py, and call the function to update the user record to the database
file, as follows:

@app.route('/api/vl/users', methods=['POST'])

def create_user():
if not request.json or not 'username' in request.json or not
'email' in request.json or not 'password' in request.json:

abort (400)

user = {
'username': request.json['username'],
'email': request.json['email'],
'name': request.json.get ('name',""),
'password': request.json['password']

}

return jsonify ({'status': add_user (user)}), 201

As you can see, in the preceding method, we called the exception with error code 400; let's
write its handler now:

@app.errorhandler (400)
def invalid_request (error) :
return make_response (jsonify ({'error': 'Bad Request'}), 400)

We still need to define the add_user (user) function, which will update the new user
record. Let's define it in app . py, as follows:

def add_user (new_user) :

conn = sqglite3.connect ('mydb.db"')

print ("Opened database successfully");

api_list=[]

cursor=conn.cursor ()

cursor.execute ("SELECT * from users where username=? oOr
emailid=?", (new_user['username'], new_user|['email']))

data = cursor.fetchall ()

if len(data) != O0:

[581]

Building Microservices in Python

abort (409)
else:

cursor.execute ("insert into users (username, emailid, password,
full_name) values(?,?,?,7?)", (new_user['username'],new_user['email'],
new_user ['password'], new_user|['name']))

conn.commit ()

return "Success"
conn.close ()
return jsonify(a_dict)

Now that we have added handler, as well as the route for the POST method of the user,
let's test it by adding a new user using the following API call:

curl -i -H "Content-Type: application/json" -X POST -d '{
"username": "mahesh@rocks", "email": "mahesh99@gmail.com",
"password": "maheshl123", "name":"Mahesh" }'
http://localhost:5000/api/v1/users

Then, validate the user's list curl, http://localhost:5000/api/vl/users, as shown in
the following screenshot:

o0t Gpackipub: vegran g hublTask-microservices- 95
root@packtpu agrant/github/flask-microservices-app# curl -i -H "Content-Type: application/json” -X POST -d '{ "username":"mahesh@rocks", "email:
": "mahesh99@gmail.com", "password": "mahesh123", "name":"Mahesh" }' http ocalhost:5000/api/v1/users

HTTP/1.0 201 CREATED

Content-Type: application/json

Content-Length: 25

Server: Werkzeug/@.11.15 Python/3.4.3

Date: Mon, 27 Feb 2017 11:15:03 GMT

{
{
"status": uccess"
root@packtpub:/vagrant/github/flask-microservices-app# curl htt| localhost:5000/api/vl/users
"user_list": [
T

"email "'manishest@gmail.com",

"mahesh99@gmail.com",

fahesh",
"password" nahesh123",
"username": "mahesh@rocks"

1

}root@packtpub:/vagrant/github/flask-microservices-app# ||

[591]

Building Microservices in Python

DELETE /api/v1/users

The delete method helps remove a specific record, which is defined by a username. We
will pass username as the JSON object that needs to be deleted from the database.

The following code snippet will create a new route in app . py for the DELETE method for
users:

@app.route('/api/vl/users', methods=['DELETE'])
def delete_user():
if not request.json or not 'username' in request.json:

abort (400)
user=request.json['username’']
return Jjsonify({'status': del_user (user)}), 200

In the next code snippet, we will call del_user, which deletes the user record specified by
username after validating whether it exists or not:

def del_user (del_user):
conn = sqglite3.connect ('mydb.db"')
print ("Opened database successfully");
cursor=conn.cursor ()
cursor.execute ("SELECT * from users where username=? ",
(del_user,))
data = cursor.fetchall ()
print ("Data" ,data)
if len(data) ==
abort (404)
else:
cursor.execute ("delete from users where username==?",
(del_user,))
conn.commit ()
return "Success"

Great! We have added the route /handler for the DELETE method for the user resource;
let's test it using the following test API call:

curl -i -H "Content-Type: application/json" -X delete -d '{
"username" :"manishl123" }' http://localhost:5000/api/vl/users

[60]

Building Microservices in Python

Then, hit the user list API (curl http://localhost:5000/api/v1/users) to see if the
changes have been made:

thub/flask-microservices-app# curl -i -H "Content-Type: application/json" -X delete -d '{ "username":"manish123" }' http¥
//localhost:5000/api/v1/users
HTTP/1.0 200 0K
Content-Type: application/json
Content-Length: 25
Server: Werkzeug/@.11.15 Python/3.4.3
Date: Mon, 27 Feb 2017 11:23:13 GMT

{
"status": "Success"
root@packtpub: /vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v1/users
{
"user_list": [
{
"email": "mahesh99@gmail.com",
"id": 4,
"name": "Mahesh",
"password": "mahesh123",
"username": "mahesh@rocks"
}

}root@acktpub:/vagrant/github/flask-microservices-app# I

Awesome! User deletion is successful.

PUT /api/v1/users

The PUT API basically helps us update a user's record specified by user_id.

Go ahead and create a route with the PUT method to update the user records defined in the
app .py file, as follows:

@app.route ('/api/vl/users/<int:user_id>"', methods=['PUT'])
def update_user (user_id) :
user = {}
if not request.json:
abort (400)

user['id']l=user_id
key_list = request.json.keys()
for i in key_list:

user[i] = request.json[i]
print (user)
return jsonify ({'status': upd_user (user)}), 200

[61]

Building Microservices in Python

Let's specify the definition of the upd_user (user) function, which basically updates the
information in the database with the check that the user id exists:

def upd_user (user) :
conn = sqglite3.connect ('mydb.db"')
print ("Opened database successfully");
cursor=conn.cursor ()
cursor.execute ("SELECT * from users where id=? ", (user['id'],))

data = cursor.fetchall ()
print (data)
if len(data) == O0:
abort (404)
else:

key_list=user.keys()
for i in key_list:
if i !'= "id":
print (user, 1)
cursor.execute ("UPDATE users set {0}=? where id=? ",
(i, userf[i], user['id']))
cursor.execute ("""UPDATE users SET {0} = ? WHERE id =
?ren _format (i), (user[i], user['id']))
conn.commit ()
return "Success"

Now that we have added the API handle for the PUT method for the user resource, let's test
it out as follows:

github/flask-microservices-app# curl -i -H "Content-Type: application/json" -X put -d "{ "password":"mahesh@rocks" }' httpt
//1localhost: 5000/ vl/users/4
HTTP/1.0 200 0K
Content-Type: application/json
Content-Length: 2
Server: Werkzeug/@.11.15 Python/3.4.3
Date: Mon, 27 Feb 2017 12:00:38 GMT

{

"status": uccess"
root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v1/users
{

"user_list": [
r

T
"email": "mahesh99@gmail.com",
nign
"name": "Mahesh",
"passwor "'mahesh@rocks",
"username": "mahesh@rocks"

}

]

}root@acktpub:/vagrant/github/flask-microservices-app# I

[62]

Building Microservices in Python

We have defined our resources that are a part of version v1. Now, let's define our next
version release, v2, which will add a tweet resource to our microservices. Users who are
defined in users resources are allowed to perform actions on their tweets. Now, /api/info
will be shown, as follows:

root@packipubs fvagrant/gthubi
root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v1/info -v
* Hostname was NOT found in DNS cache
* Trying ::1...

connect t port 5000 failed: Connection refused

Trying 127.0.0.1...

Connected to localhost (127.0.0.1) port 5000 (#0)

GET /api/vl/info HTTP/1.1
> User-Agent: curl/7.35.0
> Host: localhost:5000
Accept: */*

HTTP 1.0, assume close after body

< HTTP/1.0 200 OK

< Content-Type: application/json
Content-Length: 317
Server: Werkzeug/@.11.15 Python/3.4.3
Date: Mon, 27 Feb 2017 12:16:54 GMT

"api_version": [
{
"buildtime 2017-01-01 10:00:00",
"links": 1/users",
, post, put, delete",

2/tweets",

* Closing connection @
}root@packtpub:/vagrant/github/flask-microservices-app# I

Our tweets resource will use the HTTP methods as follows:

HTTP URI Actions

Method

GET http://localhost:5000/api/v2/tweets This retrieves the
tweets list

GET http://localhost:5000/api/v2/users/ [user_id] | This retrieves a
tweet that is given a
specific ID

[63]

Building Microservices in Python

POST http://localhost:5000/api/v2/tweets This resource will
register new tweets
with the JSON data
passed as part of the
API call into the
backend database

We can define a tweet as having the following fields:

e id: This is the unique identifier for each tweet (Numeric type)

¢ username: This should exist as a user in the users resources (String type)
¢ body: This is the content of the tweet (String type)

e Tweet_time: (Specify type)

You can define the preceding tweets resource schema in SQLite 3 as follows:

CREATE TABLE tweets (

id integer primary key autoincrement,
username varchar2(30),

body wvarchar2 (30),

tweet_time date);

Great! The tweets resource schema is ready; let's create our GET methods for the tweets
resource.

Building resource tweets methods

In this section, we will be creating APIs for the tweet resource with a different method
which will help us perform different operations on the backend database for tweets.

GET /api/v2/tweets

This method lists all the tweets from all the users.

Add the following code to app . py to add the route for the GET method:

@app.route ('/api/v2/tweets', methods=["'GET'])
def get_tweets():
return list_tweets|()
Let's define list_tweets () function which connects to database and
get us all the tweets and respond back with tweets list

[64]

Building Microservices in Python

def list_tweets():
conn = sqglite3.connect ('mydb.db"')
print ("Opened database successfully");
api_list=[]

cursor = conn.execute ("SELECT username, body, tweet_time, id from
tweets")
data = cursor.fetchall ()

if data != 0:

for row in cursor:
tweets = {}
tweets['Tweet By'] = row[O0]
tweets['Body'] = row[1l]
tweets['Timestamp'] = rowl[2]
tweets['id'] = row([3]
api_list.append(tweets)
else:
return api_list
conn.close ()
return Jjsonify ({'tweets_list': api_list})

So, now that we've added a function to get the complete tweets list, let's test out the
preceding code by making a RESTful API call as follows:

Foot@paciipub: Nvagrant/gthub fask microservioss-app
root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v2/tweets -v
* Hostname was NOT found in DNS cache
* Trying ::1...
* connect to ::1 port 5000 failed: Connection refused
Trying 127.0.0.1...
Connected to localhost (127.0.0.1) port 5000 (#@)
GET /api/v2/tweets HTTP/1.1
User-Agent: curl/7.35.0
Host: localhost:5000
Accept: */*

HTTP 1.0, assume close after body
HTTP/1.0 200 OK
Content-Type: application/json

Content-Length: 23
Server: Werkzeug/@.11.15 Python/3.4.3
Date: Mon, 27 Feb 2017 12:36:56 GMT

M AAAAAA XYYV Y Y Y % %

"tweets_list": []
* Closing connection @
}root@packtpub:/vagrant/github/flask-microservices-app# I

Currently, we haven't added any tweet, that's why it returned the empty set. Let's add a few
tweets.

[65]

Building Microservices in Python

POST /api/v2/tweets

The POST method adds new tweets by a specified user.

Add the following code to app . py to add the route for the POST method for the tweets
resource:

@app.route ('/api/v2/tweets', methods=['POST'])

def add_tweets () :
user_tweet = {}
if not request.json or not 'username' in request.json or not
'body' in request.json:

abort (400)
user_tweet ['username'] = request.]json['username']
user_tweet ['body'] = request.json|['body']
user_tweet ['created_at']=strftime ("$Y-$m-%dT$H:%$M:%3Z2", gmtime ())
print (user_tweet)
return Jsonify ({'status': add_tweet (user_tweet)}), 200

Let's add the definition of add_tweet (user_tweet) to add tweets by a specified user, as
follows:

def add_tweet (new_tweets) :
conn = sqglite3.connect ('mydb.db"')
print ("Opened database successfully");
cursor=conn.cursor ()
cursor.execute ("SELECT * from users where username=? ",

(new_tweets['username'],))

data = cursor.fetchall ()
if len(data) == O0:

abort (404)
else:

cursor.execute ("INSERT into tweets (username, body, tweet_time)
values (?,?,?)", (new_tweets['username'],new_tweets['body'],
new_tweets|['created_at']))

conn.commit ()

return "Success"

So, now that we've added the function to add the tweets list to the database, let's test out the
preceding code by making a RESTful API call as follows:

curl -i —-H "Content-Type: application/json" -X POST -d '{
"username":"mahesh@rocks", "body": "It works" }'
http://localhost:5000/api/v2/tweets

[66]

Building Microservices in Python

We should see the output of the preceding API call similar to the following screenshot:

root@packtpub: [vagrantigithubliask-microservices-app

root@packtpub:/vagrant/github/flask-microservices-app# curl -i -H "Content-Type: application/json" -X POST -d '{ "username
"It works"™ }' http://localhost:5000/api/v2/tweets

HTTP/1.0 201 CREATED

Content-Type: application/json

Content-Length: 25

Serv Werkzeug/@.11.15 Python/3.4.3

Date: Mon, 27 Feb 2017 12:40:53 GMT

mahesh@rocks" , "body" f

{
"status” Success"
}root@acktpub:/vagrant/github/flask-microservices-app# I

Let's check whether the tweet was added successfully or not by checking the tweets status
using:

curl http://localhost:5000/api/v2/tweets -v

root@packtpub: vagrantgithublask-microservioes-app
root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v2/tweets -v
* Hostname was NOT found in DNS cache

* Trying : .

* connect to port 5000 failed: Connection refused

*

*

Trying 127.0.0.1...
Connected to localhost (127.0.0.1) port 5000 (#0)
GET /api/v2/tweets HTTP/1.1
User-Agent: curl/7.35.0
> Host: localhost:5000
Accept: */*

HTTP 1.0, assume close after body
HTTP/1.0 200 OK

Content-Type: application/json
Content-Length: 156

Server: Werkzeug/0.11.15 Python/3.4.3
Date: Mon, 27 Feb 2017 13:02:38 GMT

"tweets_list": [

"It works",
id": 2,
"timestamp": "2017-02-27T12:4@:53Z",
"tweetedby": "mahesh@rocks"
}
]
* Closing connection 0
}root@packtpub: /vagrant/github/flask-microservices-app# I

[67]

Building Microservices in Python

Now that we have added our first tweet, what if we need to see only a tweet with a certain
ID? In that case, we go for the GET method with user_id.

GET /api/v2/tweets/[id]

The GET method lists the tweets made by the specified ID.

Add the following code to app . py to add a route for the GET method with a specified ID:

@app.route ('/api/v2/tweets/<int:id>', methods=['GET'])
def get_tweet (id):
return list_tweet (id)

Let's define the 1ist_tweet () function, which connects to the database, gets us the tweets
with the specified ID, and responds with the JSON data. This is done as follows:

def list_tweet (user_id):
print (user_id)
conn = sqglite3.connect ('mydb.db")
print ("Opened database successfully");
api_list=[]
cursor=conn.cursor ()
cursor.execute ("SELECT * from tweets where id=?", (user_id,))

data = cursor.fetchall ()
print (data)
if len(data) == O0:
abort (404)
else:
user = {}
user['id'] = data[0][0]
user|['username'] = data[0][1]
user['body'] = datal[0][2]
user['tweet_time'] = datal[0] [3]

conn.close ()
return jsonify (user)

[68]

Building Microservices in Python

Now that we've added the function to get a tweet with the specified ID, let's test out the
preceding code by making a RESTful API call at:

curl http://localhost:5000/api/v2/tweets/2

root@packtpub:/vagrant/github/flask-microservices-app# curl http://localhost:5000/api/v2/tweets/2
{

"body": "It works",

"id": 2,

"tweet_time": "2017-02-27T12:40:537",

"username": "mahesh@rocks"
}root@packtpub:/vagrant/github/flask-microservices-app# I

With this addition of tweets, we have successfully built the RESTful API that collectively
works as the microservices needed to access data and perform various actions around it.

Testing the RESTful API

So far, we have been building the RESTful API and hitting the URL for the root URL to see
the response and to understand whether the different methods are working properly in the
backend or not. Since it's new code, everything should be tested 100% to make sure it works
fine in the production environment. In this section, we will write the test cases, which
should work individually, and also as a system, to make sure that the complete backend
service is good to go for production.

There are different types of testing, which are defined as follows:

¢ Functional testing: This is basically used to test the functionality of a component
or a system. We do this test against the functional specification of a component.

¢ Non-function testing: This kind of testing is done against the quality
characteristics of a component, which includes efficiency testing, reliability
testing, and so on.

¢ Structural testing: This type of testing is used to test the structure of the system.
To write test cases, testers are required to have a knowledge of the internal
implementations of the code.

[69]

Building Microservices in Python

In this section, we will write the test cases, specifically, unit test cases, against our
application. We will write Python code which will run automatically, test out all the API
calls, and respond back with the test results.

Unit testing

A unit test is a piece of code that tests a unit of work or the logical unit in the tested system.
The following are the characteristics of unit test cases:

Automated: They should be executed automatically

Independent: They shouldn't have any dependencies

Consistent and repeatable: They should maintain idempotency

Maintainable: They should be easy enough to understand and update

We will use a unit testing framework called nose. As an alternative, we can use docstest
(https://docs.python.org/2/library/doctest.html) for testing.

So, let's install nose using pip with the following command:

$ pip install nose

Or, you can put it in requirement . txt, and use the following command to install it:

$ pip install -r requirements.txt

Now that we have installed the nose test framework, let's begin writing the initial test cases
on a separate file, say, flask_test.py, as follows:

from app import app
import unittest

class FlaskappTests (unittest.TestCase) :
def setUp(self):
creates a test client
self.app = app.test_client ()
propagate the exceptions to the test client
self.app.testing = True

The preceding code will test the app and initialize self.app with our app.

[70]

Building Microservices in Python

Let's write our test case to get the response code for GET /api/v1/users and add it to our
FlaskappTest class as follows:

def test_users_status_code(self):
sends HTTP GET request to the application
result = self.app.get('/api/vl/users')
assert the status code of the response
self.assertEqual (result.status_code, 200)

The preceding code will test whether we get the response on /api/v1/users as 200; if not,
it will throw an error and our test will fail. As you can see, as this code doesn't have any
dependency from any other code, we will call it as a unit test case.

Now, how to run this code? Since we have installed the nose testing framework, simply
execute the following command from the current working directory of the test case file (in
this case, flask_test.py):

$ nosetests

Great! Similarly, let's write more test cases for the RESTful API for the different methods of
the resources that we created earlier in this chapter.

e The GET /api/v2/tweets test case is given as follows:

def test_tweets_status_code (self):
sends HTTP GET request to the application
result = self.app.get('/api/v2/tweets")
assert the status code of the response
self.assertEqual (result.status_code, 200)

e The GET /api/v1/info test case is as follows:

def test_tweets_status_code(self):
sends HTTP GET request to the application
result = self.app.get('/api/vl/info')
assert the status code of the response
self.assertEqual (result.status_code, 200)

[71]

Building Microservices in Python

o The POST /api/v1/users test case is written like this:

def test_addusers_status_code(self) :

sends HTTP POST request to the application

result = self.app.post('/api/vl/users', data='{"username":
"manish21", "email":"manishtest@gmail.com", "password": "testl123"}',
content_type='application/json')

print (result)

assert the status code of the response

self.assertEquals (result.status_code, 201)

e The PUT /api/v1/users test case is as follows:

def test_updusers_status_code (self):

sends HTTP PUT request to the application

on the specified path

result = self.app.put('/api/vl1l/users/4', data='{"password":
"testingl23"}', content_type='application/json')

assert the status code of the response

self.assertEquals (result.status_code, 200)

e The POST /api/v1/tweets test case is as follows:

def test_addtweets_status_code (self) :

sends HTTP GET request to the application

on the specified path

result = self.app.post('/api/v2/tweets', data='{"username":
"mahesh@rocks", "body":"Wow! Is it working #testing"}',
content_type='application/json"')

assert the status code of the response
self.assertEqual (result.status_code, 201)

e The DELETE /api/v1/users test case is given as follows:

def test_delusers_status_code(self) :

sends HTTP Delete request to the application

result = self.app.delete('/api/vl/users', data='{"username":
"manish21"}', content_type='application/json')

assert the status code of the response

self.assertEquals (result.status_code, 200)

Similarly, you can write more test cases based on your thinking to make these RESTful APIs
more reliable and bug-free.

[72]

Building Microservices in Python

Let's execute all of them together and check whether all the tests have passed. The following
screenshot shows the test result to the f1ask_test.py script:

(env) root@packtpub:/vagrant/github/flask-microservices-app# nosetests

Ran 6 tests in 0.478s

(03¢
(env) root@packtpub:/vagrant/github/flask-microservices-app# I

Awesome! Now that all our tests have passed, we are good to go for the next level of
creating web pages around these RESTful APT's.

Summary

In this chapter, we focused on writing lots of code to build our microservices. We basically
got an understanding of how the RESTful APIs work. We also saw how we can extend these
APIs and make sure that we understand the HTTP response by the response given by these
APIs. Moreover, you learned how to write test cases, which are most important to ensure
that our code works well and is good to go for the production environment.

[73]

Building a Web Application in
Python

In the previous chapter, we focused on building our microservices, which is, basically,
backend RESTful APIs, and testing it to make sure the response will be as expected. So far,
we have been testing these RESTful APIs using curl, or maybe, using a testing framework,
that is, nose, unittest2, and so on. In this chapter, we will create some HTML pages and
write a JavaScript REST client, which will interact with microservices.

The topics that we will cover in this chapter are as follows:

¢ Building HTML pages and data binding
e JavaScript REST client using knockout.js

In this chapter, we will create a client application which will need to create dynamic content
that is gathered from an HTML web page and, based on the actions of the user, will update
the content as a response on the backend service.

As a developer, you must have come across many application frameworks that adopt the
MVC pattern. It is a large category, which is a combination of MVC (Model View
Controller), MVP (Model View Presenter), and MVVM (Model View ViewMaodel).

Building a Web Application in Python

In our case, we will use knockout.js, which is a library in JavaScript based on the MVVM
pattern that helps developers build rich and responsive websites. It can work as a
standalone or used along with other JavaScript libraries, such as jQuery. Knockout.js binds
the UI with the underlying JavaScript model. The models are updated based on the changes
in the Ul and vice versa, which is basically two-way data binding.

In knockout.js, we will be dealing with two important concepts: Binding and Observables.

Knockout.js is a JavaScript library that is generally used to develop
desktop-like web applications. It is useful, as it provides a responsive
mechanism that syncs with your data sources. It provides a two-way
binding mechanism between your data model and user interface. Read
Inoreaboutknockoutjsathttp://knockoutjs.com/documentation/intr

oduction.html.

In this chapter, we will create web applications to add a user and tweets to the database,
and validate them.

Getting started with applications

Let's get started with creating a basic HTML template. Create a directory named template
in your app root location; we will create all our future templates inside this directory.

Now, let's create the basic skeleton for the adduser.html file as follows:

<!DOCTYPE html>
<html>
<head>
<title>Tweet Application</title>
</head>
<body>
<div class="navbar">
<div class="navbar-inner">
Tweet App Demo
</div>
</div>
<div id="main" class="container">

Main content here!

</div>
<meta name="viewport" content="width=device-width, initial-
scale=1.0">
<link href="http://netdna.bootstrapcdn.com/twitter-

[75]

http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html

Building a Web Application in Python

bootstrap/2.3.2/css/bootstrap—-combined.min.css"
rel="stylesheet">

<script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery—
1.9.0.js"></script>

<script src="http://netdna.bootstrapcdn.com/twitter—
bootstrap/2.3.2/js/bootstrap.min.js"></script>

<script src="http://ajax.aspnetcdn.com/ajax/knockout/knockout—-
2.2.1.3s"></script>

</body>

</html>

As you can see in the preceding code, we have specified a couple of . js scripts that are
needed to make our HTML responsive. This is similar to twitter-bootstrap, which has a
<meta name="viewport"> attribute to help scale the page based on the browser
dimensions.

Creating application users
Before we start writing our web page, we need to create a route to create a user, as follows:

from flask import render_template

@app.route ('/adduser"')
def adduser () :
return render_template ('adduser.html')

Now that we have created the route, let's create a form in adduser.html, which will ask
for the required information related to the user and help them submit the information:

<html>

<head>

<title>Twitter Application</title>
</head>
<body>
<form >

<div class="navbar">

<div class="navbar-inner">
Tweet App Demo
</div>
</div>
<div id="main" class="container">

<table class="table table-striped">
Name: <input placeholder="Full Name of user" type "text"/>
</div>

[76]

Building a Web Application in Python

<div>
Username: <input placeholder="Username" type="username">
</input>
</div>
<div>
email: <input placeholder="Email id" type="email"></input>
</div>
<div>
password: <input type="password" placeholder="Password">
</input>
</div>
<button type="submit">Add User</button>
</table>
</form>
<script src="http://cdnjs.cloudflare.com/ajax/libs/
jquery/1.8.3/jquery.min. js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/knockout
/2.2.0/knockout-min. js"></script>
<link href="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/css/bootstrap-combined.min.css"
rel="stylesheet">
<!-- <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-
1.9.0.js"></script> ——>
<script src="http://netdna.bootstrapcdn.com/twitter—
bootstrap/2.3.2/js/bootstrap.min.js"></script>
</body>
</html>

Currently, the preceding HTML page shows only empty fields, and if you try to submit it
with data, it won't work, since no data binding is done with the backend service as yet.

Now we are ready to create JavaScript, which will make a REST call to the backend service,
and add the user content provided from the HTML page.

Working with Observables and AJAX

In order to get the data from the RESTful API, we will use AJAX. Observables keep a track
of the changes made on the data and reflect them, automatically, on all the locations where
it is used and defined by ViewModel.

By using Observables, it becomes very easy to make the Ul and ViewModel communicate
dynamically.

[77]

Building a Web Application in Python

Let's create a file named app . s, which has Observables declared, inside the static directory
with the following code--if the directory does not exist, create it:

function User (data) A
this.id = ko.observable (data.id);

this.name = ko.observable (data.name);
this.username = ko.observable (data.username) ;
this.email = ko.observable (data.email);
this.password = ko.observable (data.password) ;

}

function UserListViewModel () {

var self = this;

self.user_list = ko.observableArray([]);
self.name = ko.observable();

self.username= ko.observable();
self.email= ko.observable();
self.password= ko.observable();

self.addUser = function() |
self.save();
self.name ("");
self.username ("");
self.email ("");
self.password("");
bi

self.save = function() {
return $.ajax ({
url: '/api/vl/users',
contentType: 'application/json',

type: 'POST',
data: JSON.stringify ({

'name': self.name(),
'username': self.username(),
'email': self.email(),

'password': self.password()
Py
success: function (data) {
alert ("success")
console.log ("Pushing to users array");
self.push (new User ({ name: data.name, username:
data.username,email: data.email ,password:
data.password}));
return;
}I
error: function() {
return console.log("Failed");
}
b

[78]

Building a Web Application in Python

bi

ko.applyBindings (new UserListViewModel());
I'understand it's a lot of code; let's understand the usage of each part of the preceding code.

When you submit your content on the HTML page, a request will be received at app. js,
and the following code will handle the request:

ko.applyBindings (new UserListViewModel ());

It creates the model and sends the content to the following function:

self.addUser = function() {
self.save();
self.name ("");
self.username ("");
self.email ("");
self.password("");

bi

The preceding addUser function calls the self. save function with a passing data object.
The save function makes an AJAX RESTful call to the backend services and performs the
POST operation with the data gathered from the HTML pages. It then clears the content of
the HTML pages as well.

Our work is not yet done. As we mentioned earlier, it is two-way data binding, so we need
to send the data from the HTML side as well, so that it can be processed further in the
database.

In the script section, add the following line, which will identify the . js file path:

<script src="{{ url_for('static', filename='app.js') }}"></script>

Binding data for the adduser template

Data binding is useful to bind your data with the UI The property from the Ul will be
processed only for the first time if we do not use Observables. In this case, it cannot update
automatically based on the underlying data update. To achieve this, bindings must be
referred to the Observable properties.

[79]

Building a Web Application in Python

Now we need to bind our data with the form and its field, as shown in the following code:

<form data-bind="submit: addUser">
<div class="navbar">
<div class="navbar—-inner">
Tweet App Demo
</div>
</div>
<div id="main" class="container">
<table class="table table-striped">
Name: <input data-bind="value: name" placeholder="Full Name of
user" type "text"/>
</div>
<div>
Username: <input data-bind="value: username"
placeholder="Username" type="username"></input>
</div>
<div>
email: <input data-bind="value: email" placeholder="Email id"
type="email"></input>
</div>
<div>
password: <input data-bind="value: password" type="password"
placeholder="Password"></input>
</div>
<button type="submit">Add User</button>
</table>
</form>

Now we are ready to add our users through the template. However, how will we validate
whether the user is added successfully to our database or not? One way would be to
manually log in to the database. However, since we are working on a web application, let's
show our data (present in the database) on the web page itself--even the newly added
entries.

In order to read the database and get the user list, add the following code to app. js:

$.getJSON('/api/vl1/users', function (userModels) {
var t = $.map (userModels.user_list, function(item) {
return new User (item);
)i
self.user_list (t);
)i

[801]

Building a Web Application in Python

Now we need to make changes in adduser.html to show our user list. For that, let's add
the following code:

<ul data-bind="foreach: user_list, visible: user_list () .length >
o">
<1li>
<p data-bind="text: name"></p>
<p data-bind="text: username"></p>
<p data-bind="text: email"></p>
<p data-bind="text: password"></p>
</1li>

Awesome! We are done with adding the web page which will create new users for our
application. It will look something like this:

Tweet App Demo

Name: Full Name of user
Username: Username
email: Emailic

password: | Fassworc
Add User |

» FEric stromberg
eric.strom
eric.strom@google.com

eric@123

[81]

Building a Web Application in Python

Creating tweets from users

Before we start writing our web page, we need to create a route to create tweets. This can be
done as follows:

from flask import render_template

@app.route ('/addtweets"')
def addtweetijs():
return render_template ('addtweets.html')

Now that, we have created the route, let's create another form in addtweets.html, which
will ask the user for the required information related to tweets, and help them submit the
information:

<html>
<head>
<title>Twitter Application</title>
</head>
<body>
<form >
<div class="navbar">
<div class="navbar—-inner">
Tweet App Demo
</div>
</div>
<div id="main" class="container">
<table class="table table-striped">
Username: <input placeholder="Username" type="username">
</input>
</div>
<div>
body: <textarea placeholder="Content of tweet" type="text">
</textarea>
</div>
<div>
</div>
<button type="submit">Add Tweet</button>
</table>

</form>
<script src="http://cdnjs.cloudflare.com/ajax/libs/
jquery/1.8.3/jquery.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/
knockout/2.2.0/knockout-min.js"></script>
<link href="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/css/bootstrap-combined.min.css"

[82]

Building a Web Application in Python

rel="stylesheet">
<!-— <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-
1.9.0.js"></script> ——>
<script src="http://netdna.bootstrapcdn.com/twitter—
bootstrap/2.3.2/js/bootstrap.min.js"></script>
</body>
</html>

Note that currently, this form doesn't have data binding to communicate with the RESTful
services.

Working on Observables with AJAX for the

addtweet template

Let's develop a JavaScript that will make a REST call to the backend service and add the
tweet content provided from the HTML page.

Let's create a file with the name tweet . js inside the static directory that we created earlier
with the following code:

function Tweet (data) {
this.id = ko.observable (data.id);

this.username = ko.observable (data.tweetedby) ;
this.body = ko.observable (data.body);
this.timestamp = ko.observable (data.timestamp) ;
}
function TweetListViewModel () {
var self = this;
self.tweets_list = ko.observableArray ([]);

self.username= ko.observable();
self.body= ko.observable();

self.addTweet = function() {
self.save();
self.username ("");
self.body("");

bi

$.getJSON (' /api/v2/tweets', function (tweetModels) {

var t = $.map(tweetModels.tweets_list, function (item) {
return new Tweet (item) ;

}) i

self.tweets_list (t);

}) i

[83]

Building a Web Application in Python

self.save = function() {
return $.ajax ({
url: '/api/v2/tweets',
contentType: 'application/json',
type: 'POST',
data: JSON.stringify ({
'username': self.username(),
'body': self.body (),
)y
success: function (data) {
alert ("success")
console.log ("Pushing to users array");
self.push (new Tweet ({ username: data.username,body:
data.body}));
return;
s
error: function() {
return console.log("Failed");

ko.applyBindings (new TweetListViewModel());
Let's understand the usage of each part of this last code.

When you submit your content on the HTML page, a request will come to tweet . js, and
the following part of the code will handle the request:

ko.applyBindings (new TweetListViewModel());

The preceding code snippet creates the model and sends the content to the following
function:

self.addTweet = function() {
self.save();
self.username ("");
self.body("");
bi

[84]

Building a Web Application in Python

The preceding addTweet function calls the self. save function with a passing data object.
The save function makes an AJAX RESTful call to the backend services, and performs the
POST operation with the data gathered from the HTML pages. It then clears the content of
the HTML pages as well.

In order to show data on the web page, and to keep the data on it in sync with the data in
the backend service, the following code is needed:

function Tweet (data) {
this.id = ko.observable (data.id);
this.username = ko.observable (data.tweetedby) ;
this.body = ko.observable (data.body);
this.timestamp = ko.observable (data.timestamp) ;

}

Our work is not yet done. As we mentioned earlier, it is two-way data binding, so, we will
need to send the data from the HTML side as well, so that it can be processed further in the
database.

In the script section, add the following line, which will identify the . js file with the path:

<script src="{{ url_for('static', filename='tweet.js') }}"></script>

Data binding for the addtweet template

Once this is done, we need to now bind our data with the form and its field, as shown in the
following code:

<form data-bind="submit: addTweet">
<div class="navbar">
<div class="navbar-inner">
Tweet App Demo
</div>
</div>
<div id="main" class="container">

<table class="table table-striped">
Username: <input data-bind="value: username"
placeholder="Username" type="username"></input>
</div>
<div>
body: <textarea data-bind="value: body" placeholder="Content
of tweet" type="text"></textarea>
</div>
<div>

[85]

Building a Web Application in Python

</div>
<button type="submit">Add Tweet</button>
</table>

</form>

Now we are ready to add our tweet through the template. We perform validation for tweets
just as we performed validation for users.

In order to read the database and get the tweet list, add the following code to tweet . js:

$.getJSON (' /api/v2/tweets', function (tweetModels) {
var t = $.map(tweetModels.tweets_list, function (item) {
return new Tweet (item) ;
)i
self.tweets_list (t);
)i

Now, we need to make changes in addtweets.html to show our tweet list. For that, let's
add the following code:

<ul data-bind="foreach: tweets_list, visible: tweets_list().length
> O">

<p data-bind="text: username"></p>
<p data-bind="text: body"></p>
<p data-bind="text: timestamp"></p>

</1li>

[86]

Building a Web Application in Python

Awesome! Let's test it out. It will look something like this:

Tweet App Demo

Username:

body:

Add Tweet |

e eric.strom
Hey, this is my first tweet!!
2017-03-11T06:34:43Z
e eric.strom
New blog post, "Launch your app with the AWS Startup Kit"! #AWS

2017-03-11T06:39:40Z

In a similar fashion, you can extend this use case by deleting users from the web page
application, or can update user information in the backend services.

Also, to know more about the knockout.js library, go through the live examples at
http://knockoutjs.com/examples/helloWorld.html, which will help you gain a better
understanding, and help you with implementing it in your application.

We created these web pages to make sure our microservices work and to give you an
understanding about how a web application is developed generally; and, as developers, we
can create these web applications based on our own use case as well.

CORS - Cross-Origin Resource Sharing

CORS helps maintain data integrity between the API server and the client for the API
request.

[871]

http://knockoutjs.com/examples/helloWorld.html

Building a Web Application in Python

The idea behind using CORS is that the server and client should have enough information
about each other so that they can authenticate each other, and transfer data over a secure
channel using the HTTP header.

When a client makes an API call, it is either a GET or POST request, where the body is
usually text/plain with headers called Origin--this includes protocol, domain name, and
port with respect to the requesting page. When the server acknowledges the request, and
sends the response along with the Access-Control-Allow-Origin header to the same
Origin, it makes sure the response is received at the correct Origin.

In this way, resource sharing happens between Origins.
Almost all browsers now support CORS, which includes IE 8+, Firefox 3.5+, and Chrome.

Now, since we have the web application ready, but it is not CORS-enabled yet, let's enable
it.

Firstly, you need to install the module for CORS in Flask using the following command:
$pip install flask-cors

The preceding package exposes a Flask extension which, by default, enables CORS support
on all the routes for all Origins and methods. Once the package is installed, let's include it in
app.py as follows:

from flask_cors import CORS, cross_origin
To enable CORS, you need to add the following line:
CORS (app)
That's it. Now this CORS is enabled for all the resources in your Flask application.

In case you want to enable CORS on specific resources, then add the following code with
your specific resource:

cors = CORS (app, resources={r"/api/*": {"origins": "*"}})

Currently, we don't have a domain setup, but we are working at the localhost level. You can
test CORS by adding a custom domain in the domain name server as follows:

127.0.0.1 <your-domain-name>

Now, if you try to access this <your-domain-name>, it should be able to work properly
with this domain name, and you will be able to access the resource.

[881]

Building a Web Application in Python

Session management

Sessions are a sequence of request and response transactions associated with a single user.
The sessions are usually maintained on the server level by authenticating the user and
keeping track of his/her activity over the web page.

Session with each client is assigned a session ID. Sessions are generally stored on top of
cookies and the server signs them cryptographically--they are decrypted by the Flask
application using the secret key for a temporary duration.

Currently, we haven't set up authentication--we will be defining it in chapter 8, Securing
the Web Application. So, at this point in time, we will create the session by asking about the
username accessing the web page and making sure that the user is identified using the
sessions.

Now let's create a web page, say, main.html, which will have a URL to create the session if
it is needed to be set up, and routes to perform operations on the backend services. You
could clear the session if it already exists. See the following code:

<html>
<head>
<title>Twitter App Demo</title>
<link rel=stylesheet type=text/css href="{{ url_for('static',
filename='style.css') }}">
</head>
<body>
<div id="container">
<div class="title">
<h1l></hl>
</div>
<div id="content">
{%$ 1if session['name']l %}
Your name seems to be {{session|['name']}}.

{% else %}
Please set username by clicking it <a href="{{

url_for ('addname') }}">here.

{% endif %}
Visit this for adding new

application user or <a href="{{ url_for ('addtweet]js')
}}">this to add new tweets page to interact with RESTFUL
APT.

Clear
session

[891]

Building a Web Application in Python

</div>
</div>
</div>
</body>
</html>

Currently in this web page, a few URLSs, such as clearsession and addname won't work,
since we haven't set up the web page and route for them.

Also, we haven't set up the route for the main.html web page; let's first add it in app . py,
as follows:

@app.route('/")

def main() :
return render_template('main.html'")

Since we have added the route for main.html, let's add the route for addname in app.py,
as follows:

@app.route ('/addname"')

def addname () :
if request.args.get ('yourname') :
session['name'] = request.args.get ('yourname')
And then redirect the user to the main page
return redirect (url_for('main'))

else:
return render_template ('addname.html', session=session)

As you can see in the preceding route, it calls addname . html, which we haven't created yet.
Let's create the addname template with the following code:

<html>
<head>
<title>Twitter App Demo</title>
<link rel=stylesheet type=text/css href="{{ url_for('static',
filename="'style.css') }}">
</head>
<body>
<div id="container">
<div class="title">
<hl1>Enter your name</hl>

</div>
<div id="content">
<form method="get" action="{{ url_for ('addname') }}">

<label for="yourname">Please enter your name:</label>

[90]

Building a Web Application in Python

<input type="text" name="yourname" />

<input type="submit" />
</form>
</div>
<div class="title">
<hl></h1>
</div>
<code><pre>
</pre></code>
</div>
</div>
</body>
</html>

Great! Now we can set the session using the preceding code; you will see a web page that
looks something like this:

Your name seems to be Sam.
Visit this for adding new application user or this to add new tweets page to interact with RESTFUL API.

Clear session

Now, what if we need to clear sessions? Since we are already calling the clearsession
function from the main web page, we need to create a route in app . py, which further calls
the session's Clear inbuilt function as follows:

@app.route('/clear"')

def clearsession():

Clear the session

session.clear ()

Redirect the user to the main page
return redirect (url_for('main'))

This is how we can set the session, maintain it for users, and clear the session, as per the
requirement.

[91]

Building a Web Application in Python

Cookies

Cookies are similar to sessions, other than the fact that they are maintained on the client
computer in the form of a text file; whereas, sessions are maintained on the server side.

Their main purpose is to keep track of the client's usage and, based on their activity,
improve the experience by understanding the cookies.

The cookies attribute is stored in the response object, which is a collection of key-value pairs
that have cookies, variables, and their respective values.

We can set the cookies using the set_cookie () function of the response object to store a
cookie as follows:

@app.route ('/set_cookie')

def cookie_insertion() :
redirect_to_main = redirect ('/")
response = current_app.make_response (redirect_to_main)
response.set_cookie ('cookie_name',value='values')
return response

Similarly, reading cookies is pretty easy; the get () function will help you get the cookies if
it is already set, as shown here:

import flask
cookie = flask.request.cookies.get ('my_cookie')

If the cookie exists, it will get assigned to the cookie, and if not, then the cookie will return
None.

Summary

In this chapter, you learned how to integrate your microservices with the web application
using a JavaScript library such as knockout.js. You learned about the MVVM pattern, and
how these can be helpful to create fully developed web applications. You also learned user
management concepts, such as cookies and sessions, and how to make use of them.

In the next chapter, we will try to make our database side stronger and secure by moving it
from SQLite to other NoSQL database services, such as MongoDB.

[92]

Interacting Data Services

In the previous chapter, we built up our application using JavaScript/HTML and integrated
it with RESTful APIs with AJAX. You also learned how to set cookies on the client and
sessions on the server for a better experience for users. In this chapter, we will focus on
improving our backend database by using a NoSQL database, such as MongoDB instead of
an SQLite database, which we are currently using, or a MySQL database, and integrate our
application with it.

The topics that we will cover in this chapter are as follows:

¢ Setting up MongoDB service
e Integrating an application with MongoDB

MongoDB - How it is advantageous, and why
are we using it?

Before we begin with the MongoDB installation, let's understand why we have chosen the
MongoDB database and what it is needed for.

Interacting Data Services

Let's take a look at the advantages of MongoDB over RDBMS:

Flexible schema: MongoDB is a document database in which one collection holds
multiple documents. We don't need to define the schema of the documents prior
to inserting the data, which means MongoDB defines the document's schema
based on the data inserted into the documents; whereas, in an RDBMS, we need
to define the schema of the tables before inserting data into it.

Less complexity: There are no complex joins in MongoDB, as we have in the case
of RDBMS (for example: MySQL) databases.

Easier scalability: It is very easy to scale out MongoDB as compared to an
RDBMS.

Fast accessibility: There is faster retrieval of data in MongoDB as compared to an
RDBMS, that is, the MySQL database.

Dynamic querying: MongoDB supports dynamic queries on documents, being a

document-based query language, which makes it advantageous over other
RDBMS, which could be MySQL.

The following are the reasons why we should use MongoDB:

MongoDB stores data in JSON-style documents, which makes it easy to integrate
with the application

We can set an index on any file and property

MongoDB does auto-sharding, which makes it easy to manage and enables it to
be faster

MongoDB provides replication and high availability when used in a cluster

There are different use cases in which to use MongoDB. Let's check them here:

Big data
User data management
Content delivery and management

[94]

Interacting Data Services

The following image shows the architecture diagram of MongoDB integration with your
web application:

HTTP REST BSON

Y

Client(JSON Web

request) Application <

Pymongo driver \

MongoDB Database

MongoDB terminology

Let's look at the different terminologies of MongoDB, which are listed next:

e Database: This is similar to the database that we have in RDBMS (Relational
Database Management System), but, instead of tables, in MongoDB a database is
a physical container of collections. MongoDB can have multiple databases.

¢ Collections: This is basically a combination of documents that has its own
schema. Collections don't contribute toward the schema of documents. It's quite
equivalent to the tables in RDBMS.

¢ Document: This is similar to a tuple/row in an RDBMS. It's a set of key-value
pairs. They have a dynamic schema, where each document may or may not have
the same schema within a single collection. They may have different fields as
well.

[95]

Interacting Data Services

The following code is a sample collection for your understanding:

{
_id : ObjectId(58ccddlal9b08311417bl4ee),

body : 'New blog post,Launch your app with the AWS Startup Kit!
#AWS',

timestamp : "2017-03-11T06:39:40z2",

id : 18,

tweetedby : "eric.strom"

}

MongoDB represents JSON documents in a binary-encoded format called BSON.

Setting up MongoDB

In the current scenario, we are working on the Ubuntu workstation, so let's install
MongoDB on Ubuntu as follows.

We will use the Ubuntu package management tool, such as apt, to install the MongoDB
packages by authenticating the distributor-signed packages with the GPG keys.

To import the GPG keys, use the following command:

$ sudo apt-key adv —--keyserver hkp://keyserver.ubuntu.com:80 —--recv
EA312927

Next, we need to set the MongoDB repository path to our operating system, as follows:

$ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.1list

Once this is added, we need to update our Ubuntu repository as follows:
$ sudo apt-—-get update

Now that the repository is updated, let's install the latest stable MongoDB release using the
following command:

$ sudo apt-get install -y mongodb-org

Once it is installed, the MongoDB service should run on port 27017. We can check the
service status using the following command:

$ sudo service mongodb status

[96]

Interacting Data Services

If it does not run, you can start the service by executing the following command:

$ sudo service mongodb start

Great! Now we have installed MongoDB on our local machine. At this point in time, we
only need a standalone MongoDB instance, but if you want to create a shared MongoDB
cluster, then you can follow the steps defined on the following link:

https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/

So, now that we have enabled the MongoDB service on our machine, we are good to go to
create a database on top of it.

Initializing the MongoDB database

Previously, when we were creating a database in SQLite3, we needed to create a database
and define the schema of tables manually. Since MongoDB is schemaless, we will directly
add new documents, and collections will get created automatically. Also, in this case, we
will initialize the database using Python only.

Before we add new documents into MongoDB, we need to install the Python driver for it,
that is, pymongo.

Add the pymongo driver to requirements. txt, and then install it using the pip package
manager as follows:

$echo "pymongo==3.4.0" >> requirements.txt
$ pip install -r requirements.txt

Once it is installed, we will import it by adding the following line to app.py:

from pymongo import MongoClient

Now that we have imported the MongoDB driver for Python, we will create a connection to
MongoDB and define a function in app . py, which will initialize the database with initial
data documents, as follows:

connection = MongoClient ("mongodb://localhost:27017/")
def create_mongodatabase() :
try:
dbnames = connection.database_names ()
if 'cloud_native' not in dbnames:
db = connection.cloud_native.users
db_tweets = connection.cloud_native.tweets
db_api = connection.cloud_native.apirelease

[97]

https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/

Interacting Data Services

db.insert ({

"email": "eric.strom@google.com",
"id": 33,

"name": "Eric stromberg",
"password": "eric@123",

"username": "eric.strom"

})

db_tweets.insert ({

"body": "New blog post,Launch your app with the AWS Startup
Kit! #AwWS",

"id": 18,

"timestamp": "2017-03-11T06:39:40z",
"tweetedby": "eric.strom"

b

db_api.insert ({
"buildtime": "2017-01-01 10:00:00",

"links": "/api/vl/users",
"methods": "get, post, put, delete",
"version": "vi1"

})
db_api.insert ({
"buildtime": "2017-02-11 10:00:00",
"links": "api/v2/tweets",
"methods": "get, post",
"version": "2017-01-10 10:00:00"
})
print ("Database Initialize completed!")
else:
print ("Database already Initialized!")
except:
print ("Database creation failed!!")

It is recommended that you initialize your resource collections with some documents in the
collection so that we get some response data when we begin testing the APIs, otherwise,
you can go ahead without initializing the collections.

[98]

Interacting Data Services

The preceding function should be called before starting the application; our main function
will be something like this:

if name == '__main__':
create_mongodatabase ()
Al

(
app.run (host='0.0.0.0"', port=5000, debug=True)

Integrating microservices with MongoDB

Since we have initialized our MongoDB database, it's time to rewrite our microservices
functions to store and retrieve data from MongoDB instead of SQLite 3.

Previously, we used the curl command to get a response from the API; instead of that, we
will use a new tool called POSTMAN (https ://www.getpostman. com), which is an
application that will help you build, test, and document your APIs faster.

For more information on the workings of POSTMAN, read the

documentation at the following link:
https://www.getpostman.com/docs/

POSTMAN is supported by both Chrome and Firefox, as it can be integrated very easily as
an add-on.

First, we will modify the api_version info API to collect the information from MongoDB
instead of SQLite3, as follows:

@Qapp.route ("/api/vl/info")
def home_index () :
api_list=[]
db = connection.cloud_native.apirelease
for row in db.find () :
api_list.append(str (row))
return jsonify({'api_version': api_list}), 200

[991]

https://www.getpostman.com
https://www.getpostman.com/docs/

Interacting Data Services

Now, if you test it using POSTMAN, it should give an output that looks somewhat like this:

No Environment
http://localhost5000/

GET http://localhost:5000/apiav1 finfe] Params Save

Authorization

Type No Auth

Body © aus: 000K Time: 23ms
Pretty JSON =

1~

2~ api_version”: [

3 "{"version': 'v1', 'methods’: ‘get, post, put, delete’, 'buildtime’: '2817-01-01 10:00:00", 'links': '/api/vl/users’, '_id': Objectld(’58calag919b08323497b0459")}",

4 "{'version': '2017-01-10 10:00:00', ‘methods': ‘get, post’, 'buildtime': '2017-02-11 10:00:00", 'links': 'api/v2/tweets', '_id': ObjectId('S8cala8919b0832349fb04sa’)}

5 1

6}

Great! It works. Now, let's update the other resources of microservices.

Working with user resources

We will modify our user resources' API functions for different methods in app . py as
follows.

GET api/v1/users

The GET API function gets a complete list of users.

In order to get the complete user list from the MongoDB database, we will rewrite the
list_users () function as follows:

def list_users|():
api_list=[]
db = connection.cloud_native.users
for row in db.find() :
api_list.append(str (row))
return jsonify({'user_list': api_list})

[100]

Interacting Data Services

Let's test it on POSTMAN and see if the API responds as expected:

hitpiiflocalhost:5000/

GET http://localhost:5000/apiAt fusers

Authorization

Type No Auth

Body (5)

Pretty JSON =

1~
userlist™: [

wawn

]
H

"{'username’: 'eric.stron’, 'password': 'eric@123', 'email': 'eric.stromBgoogle.com’

, '-id': Objectld('58cala891960832349Fb0457'), 'name':

"Eric stromberg’, 'id': 33}"

No Environment

Params

Send v VA

Status: 200 0K Time: 20 ms.

Since we currently have only one document in the user's collection of the MongoDB
database, you can see only one user in the users list in the preceding screenshot.

GET api/v1/users/[user_id]

This API function gets the details of a specific user.

In order to list the details of a specific user from the MongoDB database, use the modify
list_user (user_id) function as follows:

def list_user (user_id):
api_list=[]

db = connection.cloud_native.users
for 1 in db.find({'id':user_id}):

api_list.append(str(i))

if api_list == []:
abort (404)

return jsonify ({'user_details':api_list}

[101]

Interacting Data Services

Let's test it on POSTMAN to see if it works as expected:

No Environment

B s [

Authorization

Type NoAuth
Body ®) Status: 200 0K
Prety =
i-1
2 “user_details": [
3 “{*name': "Eric stromberg', "password': 'eric8123', 'usernome': ‘eric.strom’, '_id': Objectld('SBcalaB9190832349Fb@457"), *email': 'eric.stromdgoogle.com’, 'id': 33}"
4 1

5 ¥

Also, we need to test the scenario where a user entry is not present; try this out, as shown in
the following code:

No Environment
ttpocalhost:s000!

T C— s [

Authorization
Type No Autt

Body o Status: 404 NOT FOUND

Prety JSON

1~
2 “error": "Resource not found!"
3}

[102]

Interacting Data Services

POST api/v1/users

This API function adds new users to the users list.

In this code, we will rewrite the add_user (new_user) function to interact with MongoDB
to add a user to the users collection:

def add_user (new_user) :

api_list=[]

print (new_user)

db = connection.cloud_native.users

user = db.find({'Sor':[{"username" :new_user['username']} ,

{"email":new_user['email']}]})
for i in user:
print (str(i))
api_list.append(str(i))

if api_list == []:
db.insert (new_user)
return "Success"
else
abort (409)

Now that we have modified our function, one more thing needs to be done--earlier, IDs
were generated by SQLite 3, but now, we need to generate them with a random module by
adding it to its route function, as follows:

def create_user():
if not request.json or not 'username' in request.json or not
'email' in request.json or not 'password' in request.json:

abort (400)

user = {
'username': request.json|['username'],
'email': request.json['email'],
'name': request.json.get ('name',""),
'password': request.json['password'],

'id': random.randint (1,1000)
}

Let's add one record to the users list to test whether it works as expected.

[103]

Interacting Data Services

The following screenshot shows the output status of adding a new record using POSTMAN
in MongoDB:

No Environment

pfocalhost:S00

POST hitp:/localhost:5000/apiivi/users Params send - [T
1 Body ®

form-data x-www-form-urlencoded @ raw binary

i~ {

username": “Saithereadd”,

email": “raysondgrolinasgnail. con”,

4 possword”: “Aengdiej",
name": "Raymand G. Molina
}
Body ® tatue: 201 CREATED Time: 22 ms
Pretty =

‘status”: "Success

Let's validate whether it has updated the properties in the MongoDB collection as well.

The following screenshot validates that our new record has been added successfully:

No Environment
http:/riocalnost5000/

PR — s [

Authorization
Type No Autt

Body © atus: 200 OK

Prety JSON

1-q

2« tuser_list™: [

3 “{'name’: 'Eric stromberg", '_id': Object1d('SBcbBb4619b08337bEBcIBec’), 'username’ : ‘eric.strom', 'email': 'eric.stromégoogle.com’, 'id': 33, 'password': 'erice123'}",
{'name’: 'Raymond G. Molina', '_id": Objectld('S8cbOb7719b@8337c8aadBae’), 'username’: 'Saithereadd’, 'email': 'raymondgmolina@gmail.com', 'id': 464, 'password': 'Aengdie]'}"

5 h)

6 ¥

[104]

Interacting Data Services

PUT api/v1/users/[user_id]

This API function is used to update the attributes of the users in the MongoDB users
collection.

In order to update the documents in the MongoDB user collection for a specific user, we
will need to rewrite the upd_user (user) method as follows:

def upd_user (user) :
api_list=[]
print (user)
db_user = connection.cloud_native.users
users = db_user.find_one ({"id":user['id"']})
for i in users:
api_list.append(str(i))
if api_list == []:
abort (409)
else:
db_user.update ({'id':user['id']},{'Sset':

user}, upsert=False)
return "Success"

Now that we have updated the method, let's test it on POSTMAN and check the response.

The following screenshot shows the response of the update API request using POSTMAN:

No Envirenment

PUT hutpu/locainost:5000/apiiv1 usersi464

"username” : "Saitheraymong” ,
"enail: *raymondgmol ina998gmail.con"

1

Body G}

Pretty SON =

status”: "Success’

[105]

Interacting Data Services

Let's validate the user document to check whether the fields were modified or not:

No Environment
/itocalhost:S000/

GET hitp://iocalhostS000/apini fusers Params Send ~ EEEENE

Authorization

Type o Aut
Body I 00K
Prety

=

“user_list": [

3 “{*name': "Eric stromberg', 'username': 'eric.strom', '_id': Objectld('S8cb@b4610b08337b68cI6ec'), "enail': ‘eric.stromégoogle.com’, 'id": 33, 'password': erice123'}",

4 "{"name’': "Raymond G. Molina", 'username’: 'Saitheraymong', '_id": ObjectId('S8cb@b7719b@8337c8aad8ae’), "email’: 'raymondgmolinad98gmail.com', 'id': 464, "password’: 'Aengdiej'}

5 1

DELETE api/v1/users

This API deletes a specific user from the users list.

In this case, we will modify the del_user (del_user) method to delete a user from the
MongoDB users collection as follows:

def del_user (del_user):

db = connection.cloud_native.users

api_list = []

for 1 in db.find({'username':del_user}) :
api_list.append(str(i))

if api_list == []:
abort (404)
else:

db.remove ({"username" :del_user})
return "Success"

[106]

Interacting Data Services

Let's test it out over POSTMAN and see if the response is as expected:

No Environment
hitp/localhostS000r
DELETE http:/localhost:50007apivi/users params Save
1 Bodye ¢
formdata O x-www-form-urlencoded ® raw 0 binary
i-{
username”: "Saitheraymong"
3}
Body ® 00 0K 2
Preny N E
i
2 “status": "Success”

Now that we've deleted one user, let's see if it made any changes in the overall users list:

No Environment

GET http://localhost:S000/apin fusers Params send - [EEENS

Authorization

Type NoAuth

"{"email’: 'eric.stromigoogle.com’, *name": 'Eric stromberg', "id": 33, '_id': ObjectId(’S8cb@b4619b@8I37bE8C36ec'), "password': 'eric@123', 'username': eric.strom'}"

Great! We have made changes in all the RESTful API URLs for the user resources, and
validated them as well.

[107]

Interacting Data Services

Working with the tweets resources

Now that our user resources APIs are working fine with MongoDB as the database service,
we will do the same for the tweets resources as well.

GET api/v2/tweets

This function gets the complete list of tweets from all the users.

Let's update our 1ist_tweets () method to begin getting the list of tweets from the tweets
collection of MongoDB using the following code snippet:

def list_tweets():
api_list=[]
db = connection.cloud_native.tweet
for row in db.find () :
api_list.append(str (row))
return jsonify ({'tweets_list': api_list})

Now that we have updated the code, let's test it out on POSTMAN. The following
screenshot lists all the tweets by making an API request using POSTMAN:

GeT S S—

- "tweets_list": [
"{'id': 18, '_id': ObjectId(’S8ccd9b219p@B30Fa62b9267"), 'body': 'New blog post,launch your app with the AWS Startup Kit! #ANS', ‘tweetedby': 'eric.strom', 'timestamp': '2017-03-11T06:39:40Z'}

GET api/v2/tweets/[user_id]

This function gets the tweets from a specific user.

[108]

Interacting Data Services

In order to get tweets from a specific user from the tweets collection, we need to modify our
current 1ist_tweet (user_id) function as follows:

def list_tweet (user_id) :

db = connection.cloud_native.tweets

api_list=[]

tweet = db.find({'id':user_id})

for 1 in tweet:

api_list.append(str(i))

if api_list == []:
abort (404)

return Jjsonify({'tweet': api_list})

Let's test out our API and validate whether it is working as expected or not:

No Environment
http/iocainost:5000¢

GET hitp/localhost:5000/apifv2/tweets Params send -~ JEES

Autharization

200 0K e 18 ms

"tweets_list": [
"{'id': 18, '_id': ObjectId(’S8ccd9b219p@B30Fa62b9267"), 'body': 'New blog post,launch your app with the AWS Startup Kit! #ANS', ‘tweetedby': 'eric.strom', 'timestamp': '2017-03-11T06:39:40Z'}
¢ 1

POST api/v2/tweets

This function adds new tweets from an existing user.

In this case, we need to modify our add_tweet (new_tweet) method to interact with users,
and the tweets collection in MongoDB to add new tweets, as follows:

def add_tweet (new_tweet) :
api_list=[]
print (new_tweet)
db_user = connection.cloud_native.users
db_tweet = connection.cloud_native.tweets
user = db_user.find({"username":new_tweet['tweetedby']})
for i in user:
api_list.append(str(i))

[109]

Interacting Data Services

if api_list == []:

abort (404)

else:
db_tweet.insert (new_tweet)
return "Success"

Now that we have modified the record, let's test it out. The following screenshot shows the
success status of the POST request to add new tweets using POSTMAN:

No Environment
hitpriocalnost5000
POST httpi/ocalhost5000/apinv2/iweets params Send - RN
5 Body &
®raw O binary
“username”: “eric.strom",
"body": " Time to be € ¥ANSSUMMIT"
4 3}
Body © atus: 201 CREATED Time: 19 ma
Pretty SON =a
status™: "Success”

Let's now validate whether the newly added tweets were updated in the tweet list, as
shown in the following screenshot:

No Environment
hup:/iocalhost5000/

GET http:#/localhost:5000/apisv2/tweets Params save

Authorization
Type No Auth
Body ® Status: 200 0K Time: 11ms
Pretty JSON =
1-q Wrap Line
Ze “tweets_list": [
3 "{'_id’: Objectld(’SBccddlal9b@8311417bltee’), "tneetedby’: ‘eric.strom’, 'timestamp’: '2817-83-11T06:33:40Z', 'body’: 'New blog post,Launch your app with the AWS Startup Kit! #ANS®, 'id': 18},
4 "{'7id": Objectld('S8ccdd69196083115¢03e57¢'), "tneetedby’: 'eric.strom’, 'body's ' Time to be @ #ANSSUMMIT', 'timestamp': '2017-03-18T07:10:332", 'id': 622"
5 1
6 H

[110]

Interacting Data Services

Summary

In this chapter, we migrated our file-based database service (SQLite) to a NoSQL-
document-based database service (MongoDB). You learned how to integrate MongoDB
with your RESTful APIs to respond to hold data, and respond based on the request from the
client. The next chapter will be more interesting, as we will build our frontend web views
using React.

[111]

Building WebViews with React

So far, we have been building our microservices and making our backend services more
responsive and efficient. Also, we have been trying out different database services which
can secure and increase the performance of the storage and retrieval of data, which is of
essence here.

In this chapter, we will focus on building our frontend page using React and integrating
these pages with the backend to form a complete application.

The topics that we will cover in this chapter are as follows:

e Setting up a React environment
¢ Creating a user authentication panel
e Integrating react with backend APIs

Understanding React

In simpler terms, React is the Ul layer of your application. It is a Javascript library to build
fast and quick user interfaces. React, basically, helps you to create awesome webViews for
each state of your application. So, we are going to use React for this purpose. But before we
do that, let's understand a few concepts/key points of React, which are listed next:

e Components: All your collections of HTML and JavaScript are called
components. React, basically, provides hooks to render HTML pages with
JavaScript enabled. The important thing here is that React works as a controller to
render different web pages for each state of your application.

Building WebViews with React

e Props for static version in React: Usually, in HTML, you need a lot of code for
showing all the data on the frontend and, moreover, it's repetitive. React props
help you solve this problem. Props, basically, keep the state of data and pass
values from the parent to the child.

¢ Identifying the minimal state: To build your app correctly, you first need to
think of the minimal set of the mutable state that your app needs. Like, in our
case, we need to keep the state of users always available during the different
states of the application.

e Identifying active state: React is all about one-way data flow down the
component hierarchy. We need to understand every component that renders
something based on that state. Also, we need to understand how states change at
the level of component hierarchy.

¢ React-DOM: The react-dom is a combination of React and DOM. React contains
the functionality utilized in web and mobile apps. The react-dom functionality is
utilized only in web apps.

Setting up the React environment

In order to run React, we need to set up an initial environment, which includes installing a
couple of libraries of node. js.

Installing node

Before we start installing React and the package list, we need to have node. js installed on
our system.

In Linux (Debian-based system), the process of installation is pretty simple.

First, we need to add PPA from the node . js official website by using the following
commands:

$ sudo apt-get install python-software-properties
$ curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -

Once it is set up, we can install node . js with the following command:

$ apt-get install nodejs

[113]

Building WebViews with React

Now let's check the node and npm versions, as follows:

$ npm -v
4.1.2

$ node -v
v7.7.4

In our setup, we use the aforementioned version, but the node version around v7.x should
be fine, and for npm, v4.x should work fine.

Creating package.json

This file is, basically, metadata for your application, which contains the complete libraries
/dependencies that need to be installed for your application. Another real-world advantage
is that it makes your build reproducible, which means that it's way easier to share it with
other developers. There are different ways in which you can create your customized
package. json.

The following is the minimum information that needs to be provided in packages. json:

"Name" - lowercase.
"version" - in the form of x.x.x
For example:
{
"name": "my-twitter-package",
"version": "1.0.0"

}
In order to create the package. json template, you can use the following command:
$ npm init # in your workspace

It will ask for values such as name, version, description, author, license, and so on; fill in the
values, and it will generate package. json.

If you don't want to fill the information in now, you can use the —-yes or -y attribute to use
the default values as follows:

$npm init --yes
For our application, I have generated package. json, which looks something like this:

{
"name": "twitter",
"version": "1.0.0",

[114]

Building WebViews with React

"description": "Twitter App",
"main": "index.js",
"dependencies": {
"babel-loader": ""6.4.1",
"fbjs": "~0.8.11",
"object-assign": "*4.1.1",
"react": "~15.4.2",
"react-dev": "0.0.1",
"react-dom": "*0.14.7",
"requirejs": ""2.3.3"
b
"devDependencies": {
"babel-core": ""6.4.5",
"babel-loader": ""6.2.1",
"babel-preset-es2015": ""6.3.13",
"babel-preset-react": ""6.3.13",
"webpack": "~1.12.12"
b
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
by
"author": "Manish Sethi",
"license": "ISC"

}

Now, that we have generated package. json, we need to install these dependencies on our
workstation using the following command:

$ npm install

Please make sure that, when you execute the preceding command, package. json should
be in the current working directory.

Building webViews with React

First of all, we will create a home view from which React will be called. So, let's create
index.html, which has the following contents, in the template directory:

<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Flask react</title>
</head>
<body>
<div class="container">

[115]

Building WebViews with React

<h1l></h1>

<div id="react"></div>

</div>

<!-— scripts ——>
<script src="https://code.jquery.com/jquery-2.1.1.min.Jjs"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/
react/15.1.0/react.min.js"></script>
<script src="https://npmcdn.com/react—
router@2.8.1/umd/ReactRouter.min. js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/
libs/react/15.1.0/react-dom.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/libs/
react/0.13.3/JSXTransformer.js"></script>

</body>
</html>

As you can see in the preceding HTML page, we have defined id ="react", which we will
use to call the React main function based on the ID, and perform a certain operation.

So, let's create our main. js, which will send a response, with the following code:
import Tweet from "./components/Tweet";

class Main extends React.Component {
render () {

return (
<div>
<hl>Welcome to cloud-native-app!</hl>
</div>
)i
}
}
let documentReady =() =>{

ReactDOM. render (
<Main />,
document .getElementById('react"')
)i
}i
$ (documentReady) ;

[116]

Building WebViews with React

Now we have defined our basic structure of the React response. Since we are building an
application with multiple views, we need a build tool which will help us put all our assets,
including JavaScript, images, fonts, and CSS, under one package, and generate it into a
single file.

Webpack is the tool which will help us solve this problem.

Webpack should already be available, as we defined the Webpack package as part of
package. json, which we installed earlier.

Webpack, basically, reads a single entry file, which could be the . js file, reads its child
components, and then converts them into a single . js file.

Since we have already defined it in package. json, it is already installed.

In Webpack, we need to define a configuration which will help it to identify the entry file
and the loader that is to be used to generate a single . js file. Also, you need to define the
filename for the generated code.

Our Webpack configuration would be something like this:

module.exports = {
entry: "./static/main.js",
output: {
path: __dirname + "/static/build/",
filename: "bundle.js"
}I
resolve: {
extensions: ['', '.Jjs', '.jsx']
}I
module: {
loaders: [
{ test: /\.js$/, exclude: /node_modules/, loader: "babel-
loader", query:{presets:['react',6 'es2015']} }
1
}
bi

You can extend the preceding configuration based on your use cases. Sometimes,
developers try *.html as the entry point. In that case, you need to make appropriate
changes.

Let's move on to build our first webView using the following command:

$ webpack -d

[117]

Building WebViews with React

The -d attribute in the last command is used for debugging; it generates another file,
bundle. js.map, which shows the activity of Webpack.

Since we are going to build the application repeatedly, we can use another flag, ——watch or
-w, which will keep track of the changes in the main. js file.

So, now our Webpack command should be something like the following:
$ webpack -d -w

Now we have built our application. Remember to change your routes in app . py so that
home should be navigated as follows:

@app.route ('/index"')

def index () :
return render_template('index.html')

Let's check what our home page looks like now.

Flask React

‘Welcome to cloud-native-app!

You can also check whether we have React and react-dom running in the background in the
inspect mode.

This is a very basic structure to understand the workings of React. Let's move on to our use
case, where we have created tweet webViews, and the user can view the old tweets as well.

[118]

Building WebViews with React

So, let's create Tweet . js, which will have the basic structure of tweets, such as a textbox for
contents, and a button to post tweets. Add the following code to Tweet . js:

export default class Tweet extends React.Component {

render () {
return (
<div className="row">
</nav>
<form >
<div >
<textarea ref="tweetTextArea" />
<label>How you doing?</label>
<button >Tweet now</button>
</div>
</form>
</div>

)
}

Let's call this function from main. js, so that it is loaded on the home page, by updating the
render function as follows:

import Tweet from "./components/Tweet";
render () {

return (

<div>

<Tweet />

</div>

)i
}

If you load the page now, it will be pretty simple. Since we want to create a web
application, which should be attractive, we will use a couple of CSS here to do so. In our
case, we are using Materialize CSS (http://materializecss.com/getting-started.html).

Add the following block of code in index.html:

<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/
materialize/0.98.1/css/materialize.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/
materialize/0.98.1/js/materialize.min.js"></script>

Also, we need to update Tweet.js as follows

[119]

http://materializecss.com/getting-started.html

Building WebViews with React

render () {
return (
<div className="row">
<form >
<div className="input-field">
<textarea ref="tweetTextArea" className="materialize-
textarea" />
<label>How you doing?</label>
<button className="btn waves—-effect waves-light
right">Tweet now <i className="material-icons
right">send</i></button>
</div>
</form>
</div>
)i
}

Let's try to add tweets, and send them across with state so that some tweets should be
shown.

In the Main class of main. js, add the following constructor function to initialize the state:

constructor (props) {
super (props) ;

this.state = { userId: cookie.load('session') };
this.state={tweets:[{'id': 1, 'name': 'guest', 'body': '"Listen to
your heart. It knows all things." - Paulo Coelho #Motivation' }]}
}

Now update the render function as follows:

render () {
return (
<div>
<TweetList tweets={this.state.tweets}/>
</div>
)
}
}

Let's create another file, TweetList . js, which will show the tweets, with the following
code:

export default class TweetList extends React.Component {
render () {
return (
<div>
<ul className="collection">

[120]

Building WebViews with React

<li className="collection-item avatar">
<i className="material-icons circle red">play_arrow</i>
{this.props.tweetedby}
<p>{this.props.body}</p>
<p>{this.props.timestamp}</p>
</1li>

</div>
)i
}
}

Great! Now we have added this template. Let's check out our home page and see how the
CSS works there. But before that, since we are using Webpack for building, make sure you
add the following line to load bundle. js every time--this will run the webViews in the
index.html file.

<script type="text/javascript" src="./static/build/bundle.js">
</script>

Awesome! The home page should look something like this:

TWEET NOW

guest
° “Listen to your heart. It knows all things." - Paulo Coelho #Motivation

Let's move forward to post tweets--we should be able to add new tweets, and they should
be updated in TweetList. js as well.

[121]

Building WebViews with React

Let's update our Tweet . js code so that it sends the tweets to main. js to process them.
Now, we need to send our tweets tomain. js, in order to do so, we need to update our
Tweet . js file with the following code:
sendTweet (event) {
event .preventDefault () ;
this.props.sendTweet (this.refs.tweetTextArea.value);

this.refs.tweetTextArea.value = '"';

}
Also, be sure to update the render function with the form onsubmit attribute as follows:
<form onSubmit={this.sendTweet.bind (this) }>
So, after adding content into the text area, it should submit the tweet as well.
Now, let's update the render function of main. js to add new tweets, as follows:
<Tweet sendTweet={this.addTweet.bind(this) }/>
We also need to add the addTweet function in the Main class, defined in the following;:

addTweet (tweet) :

let newTweet = this.state.tweets;
newTweet.unshift ({{'id': Date.now (), 'name': 'guest',6 'body':
tweet})

this.setState ({tweets: newTweet})

Your page, after adding the new tweet, should look something like this:

TWEET NOW >

guest
“You're amazing just the way you are.” - Bruno Mars #Motivation

o:
“Listen to your heart. It knows all things.” - Paulo Coelho #Motivation

[122]

Building WebViews with React

Currently, we are using React to hold the data in an array. Since we have built our
microservices to hold this kind of data, we should integrate our webView with the backend
services.

Integrating webView with microservices

In order to integrate our microservices with webViews, we will use AJAX to make API calls.

We need to add the following code snippet in main. js to pull our entire tweet list:

componentDidMount () {
var self=this;
$.ajax ({url: " /api/v2/tweets/",
success: function (data) {
self.setState ({tweets: datal['tweets_list']});
alert (self.state.tweets);
return console.log("success");
}I
error: function() {
return console.log("Failed");
}
}) i

Similarly, we need to modify our addTweet function in our main. js as follows:

addTweet (tweet) {
var self = this;

S.ajax ({
url: '/api/v2/tweets/"',
contentType: 'application/json',

type: 'POST',
data: JSON.stringify ({

'username': "Agnsur",
'body': tweet,
P
success: function(data) A

return console.log("success");

}I
error: function() {

return console.log("Failed");

[123]

Building WebViews with React

Since there will be multiple tweets which need to be iterated with a similar template of
tweet, let's create another component called templatetweet. js with the following code:

export default class Tweettemplate extends React.Component {
render (props) {
return (
<1li className="collection-item avatar">
<i className="material-icons circle red">play_arrow</i>
{this.props.tweetedby}
<p>{this.props.body}</p>
<p>{this.props.timestamp}</p>

)i
}
}

Remember, we have changed the field of props based on our database collection keys.

Also, we need to update our TweetList. js to use the preceding template by adding it as
follows:

import Tweettemplate from './templatetweet'

export default class TweetList extends React.Component {
render () {
let tweetlist = this.props.tweets.map (tweet => <Tweettemplate key=
{tweet.id} {...tweet} />);
return (
<div>
<ul className="collection">
{tweetlist}

</div>
)
}
}

[124]

Building WebViews with React

Great! Your home page should look like this now:

_

How you doing?

TWEET NOW >

Camain

° Trust is the glue of life. It's the foundational principle that holds all relationships. - Stephen R. Covey
#Motivation
2017-03-29 08:05:36

User authentication

All our tweets are protected, and should react only to the audience which we want to
showcase them to. Also, anonymous users should not be allowed to tweet. For that, we will
create a database and web pages to enable new users to sign in and log in to the tweet
webView as well. Remember, we will use Flask to authenticate users, and also to post data
to the backend user.

Login user

Let's create our login page template, where the existing users need to fill in their username
and password to authenticate. The following is the code snippet:

<form action="/login" method="POST">
<div class="login">
<div class="login-screen">
<div class="app-title">
<h1>Login</hl>
</div>

[125]

Building WebViews with React

<div class="login-form">
<div class="control-group">

<input type="text" class="login-field" value=""

placeholder="username" name="username">

<label class="login-field-icon fui-user" for="login-name">
</label>
</div>

<div class="control-group">
<input type="password" class="login-field" wvalue=""
placeholder="password" name="password">
<label class="login-field-icon fui-lock" for="login-pass">
</label>

</div>

<input type="submit" value="Log in" class="btn btn-primary btn-

large btn-block" >

Don't have an account? Sign up

here.

</div>

We will post the data to the login page, which we will define in the app . py file.

But first, check if the session is present or not. If not, then you will be redirected to the login
page. Add the following code to app . py, which will validate session details for the user:

@app.route('/")
def home () :
if not session.get ('logged_in'"):
return render_template('login.html"')
else:
return render_template('index.html', session =
session['username'])

Let's create the route for login, and validate the credentials to authenticate users to tweet.
Here is the code snippet:

@app.route('/login', methods=['POST'])
def do_admin_login () :
users = mongo.db.users
api_list=[]
login_user = users.find({'username': request.form['username']})
for i in login_user:
api_list.append (i)
print (api_list)
if api_list !'= []:
if api_list[0]['password'].decode ('utf-8")

[126]

Building WebViews with React

bcrypt.hashpw (request.form['password'] .encode ('utf-8"),
api_1list[0] ['password']) .decode ('utf-8"'):
session['logged_in'] = api_list[0]['username']
return redirect (url_for ('index'))
return 'Invalid username/password!’
else:
flash ("Invalid Authentication™)

return 'Invalid User!'

Once you are done with this, your login page will appear at the root URL, and it should
look something like this:

Login

username

password

Sign up now to create your account.

As you can see, we have provided a link, Sign up now, to create an account for the new
user.

Remember, we are using APIs to authenticate the user from the user collection in our
database.

Sign up user

Let's move on to create our sign up page to help register new users so that they can tweet as
well.

[127]

Building WebViews with React

Let's create signup.html, which will ask for user details. Check the following code snippet
for this:

<div class="container">
<div class="row">
<center><h2>Sign up</h2></center>
<div class="col-md-4 col-md-offset-4">
<form method=POST action="{{ url_for('signup') }}">
<div class="form-group">
<label >Username</label>
<input type="text" class="form-control"
name="username" placeholder="Username">
</div>
<div class="form-group">
<label >Password</label>
<input type="password" class="form-control"
name="pass" placeholder="Password">
</div>
<div class="form-group">
<label >Email</label>
<input type="email" class="form-control"
name="email" placeholder="email">
</div>
<div class="form-group">
<label >Full Name</label>
<input type="text" class="form-control"
name="name" placeholder="name">
</div>
<button type="submit" class="btn btn-primary btn-
block">Signup</button>
</form>

</div>
</div>
</div>

The preceding code is, basically, the template which needs the backend API to submit the
data to the user.

Let's create a signup route, which will take the GET and POST methods to read the page,
and submit the data to the backend database. The following is the code snippet which needs
to be added to app.py:

@app.route ('/signup', methods=['GET', 'POST'])
def signup() :
if request.method=='POST':
users = mongo.db.users

[128]

Building WebViews with React

api_list=[]
existing_user = users.find({'Sor':
[{"username" :request.form['username']} ,
{"email":request.form['email']}1})
for i in existing_user:
api_list.append(str(i))

if api_list == []:
users.insert ({
"email": request.form['email'],
"id": random.randint (1,1000),
"name": request.form['name'],

"password": bcrypt.hashpw(request.form['pass'].
encode ('utf-8"'), bcrypt.gensalt()),
"username": request.form['username']
)
session['username'] = request.form['username']
return redirect (url_for ('home'))

return 'That user already exists'
else
return render_template('signup.html')

Once the user has signed up, it will set the session, and redirect it to your home page.

Your Sign up page should look something like this:

Sign up

Username

Password

Password

Email

email

Full Name

name

[129]

Building WebViews with React

We have authenticated the user, but what if he wants to update his/her personal
information? Let's create a profile page, which will help them do so.

User profile

Let's create a profile page (profile.html), which will be accessible by the user already
logged in at the home page in the navigation panel.

Add the following code to profile.html:

<div class="container">
<div class="row">
<center><h2>Profile</h2></center>
<div class="col-md-4 col-md-offset-4">
<form method=POST action="{{ url_for('profile') }}">
<div class="form-group">
<label >Username</label>
<input type="text" class="form-control"
name="username" value='{{username}}'>
</div>
<div class="form-group">
<label >Password</label>
<input type="password" class="form-control"
name="pass" value='{{password}}'>
</div>
<div class="form-group">
<label >Email</label>
<input type="email" class="form-control"
name="email" value={{email}}>
</div>
<div class="form-group">
<label >Full Name</label>
<input type="text" class="form-control"
name="name" value={{name} }>
</div>
<button type="submit" class="btn btn-primary btn-
block">Update</button>
</form>

</div>
</div>
</div>

[130]

Building WebViews with React

Since we have created the profile, we need to create a route for the profile, which will read
the database to get user details and POST back to the database as well.

The following is the code snippet from app . py:

def profile():
if request.method=='POST':

users = mongo.db.users
api_list=[]
existing_users = users.find({"username":session['username']})

for i in existing_users:
api_list.append(str(i))
user = {}
print (api_1list)
if api_list !'= []:
print (request.form['email'])
user['email']=request.form['email']
user|['name']= request.form['name']
user|['password']=request.form['pass']
users.update ({'username':session['username']}, {'Sset"':
user})
else:
return 'User not found!'
return redirect (url_for('index"'))
if request.method=='GET':
users = mongo.db.users
user=/[]
print (session['username'])
existing_user = users.find({"username":session|['username']})
for i in existing_user:
user.append (1)

return render_template ('profile.html', name=user[0]['name'],
username=user [0] ['username'], password=user[0]['password'],
email=user[0] ['email'])

[131]

Building WebViews with React

Once this last bit of code is added, your profile page should look something like this:

Profile
Username
Upostaing
Password
Email

ColleenSLam@dayrep.com

Full Name

Colleen

Also, we should add the profile link in Tweet . js in the navigation template by adding the
following lines:

Profile</1li>
Logout</1li>

[132]

Building WebViews with React

Now your home page will look something like this:

Welcome Camain

A PP Profile Logout

How you doing?

TWEET NOW >

Camain
° Trust is the glue of life. It's the foundational principle that holds all relationships. - Stephen R. Covey #Motivation
2017-03-29 08:05:36

Log out users
As you can see, in the preceding section, we provided the route to log out, which, basically,
removes the user session, and redirects the user to the login page. The following is the code
snippet from app.py:
@app.route ("/logout")
def logout () :
session['logged_in'] = False
return redirect (url_for ('home'))
Now our application is fully built-up, starting from the users logging in, to submitting their
tweets, and then logging out.

[133]

Building WebViews with React

Testing the React webViews

Since we are building webViews, we need to test them to catch some of the bugs before they
happen. Also, testing will help you build better code.

There are a number of Ul-testing frameworks which could help you test your web apps.
Two of them are discussed in the following section.

Jest

Jest is a unit testing framework, which is provided by Facebook to test JavaScript. It is used
to test individual components. It is simple, standard, and standalone.

It tests your components based on fake DOM implementations, and runs different tests to
check the functionalities. It automatically resolves dependencies. Also, you can run all the
tests in parallel.

You can refer to the following link, which could help you write test cases for your React
application:

https://facebook.github.io/jest/docs/tutorial-react.html

Selenium

Selenium is an open source and portable automated software testing tool for testing web
applications. It provides end-to-end testing, which means that it is a process of executing
test scenarios against a real browser to test the entire stack of a multi-tiered application.

It has the following different components:

¢ IDE: This helps you describe the testing workflow.

Selenium WebDriver: This automates browser testing. It sends commands
directly to the browser and receives the results.

Selenium RC: This remote control helps you to create test cases.

Grid: This runs test cases across different browsers, and in parallel.

This is one of the best tools you can use to test our web application, which I would
recommend.

You can gather more about Selenium at http://www.seleniumhg.org/docs/.

[134]

https://facebook.github.io/jest/docs/tutorial-react.html
http://www.seleniumhq.org/docs/

Building WebViews with React

Summary

In this chapter, our focus was on creating frontend user webViews and how to improve
them to attract consumers. You also learnt how React can help us to build these webViews
and implement interactions with backend services. In the upcoming chapter, things will get
more interesting, as we will play around with our frontend application, and will explain
how we scale it using Flux to handle a large number of incoming requests from the internet.

[135]

Creating Uls to Scale with Flux

In the last chapter, we created webViews for our application and also saw the integration
between our frontend and backend application, which was very important to understand.

In this chapter, we will focus on structuring our frontend. Ideally, each module should be
responsible for a single thing. As in our main components, we are running too many
operations within single modules. Besides rendering the different views, we have code to
make an API request to endpoints and receive, handle, and format the response.

In this chapter, we will cover the following topics:

¢ Understanding Flux
¢ Implementing Flux on React

Understanding Flux

Flux is a pattern that Facebook created to build consistent and stable webapps with React.
React doesn't give you the ability to manage data; rather, it simply accepts data through
props and components, and further, the components process the data.

The React library doesn't really tell you how to get the components, or where to store the
data, that's why it's called the view layer. In React, we don't have a framework as we have
in the case of Angular or Backbone. That's where Flux comes in. Flux is not really a
framework, but it's a pattern that will have you building your own views.

Creating Uls to Scale with Flux

What is a Flux pattern? We have your React components, such as a Tweet component and
so on, and these components do two things in the Flux pattern--they either perform actions
or they listen to stores. In our use case, if a user wants to post a tweet, the components need
to perform actions and actions then interact with stores, update the pattern to the API, and
give a response to the components. The following diagram will give you more clarity on
Flux:

Actions

Dispatcher

Components

|
|
|

JUL

Flux concepts

The following are the Flux concepts that you need to understood before moving ahead:

e Actions: This is the way components interact with API endpoints and update
them. In our case, we post new tweets using it. Actions pipe the action to the
dispatcher. It might create multiple actions.

[137]

Creating Uls to Scale with Flux

¢ Dispatcher: This dispatches every single event that comes in and sends it across
to every single subscriber, which are basically stores.

e Stores: This is an important part of Flux. Components always listen to stores for
any changes. Say, if you wrote a new tweet, that's an action, and wherever the
tweet is updated in the store, an event is fired and the component is made aware
that it has to be updated with the latest data. If you come from the Angular]S
world, store is a service, or if you are of Backbone.js, stores are nothing but a
collection.

¢ Components: This is used to store the action names.

We will be using the Jsx file instead of Js, as there is not much difference-
-Js is a standard Javascript and Jsx is an HTML-like syntax that you can
use with React to create React components easily and perceptively.

Adding dates to Ul

Before we deep dive into Flux, a little thing we need to add to our views is the date feature.
Earlier, you were seeing the timing of the tweets that are stored in the database as the TZ
format; however, ideally, it should be compared with current timings and should be shown
in reference to it.

In order to do that, we will need to update our main. jsx file so that it will format our
tweets. Add the following code to main. jsx:

updatetweets (tweets) {
let updatelist = tweets.map (tweet => {
tweet .updatedate = moment (tweet.timestamp) . fromNow () ;
return tweet;

)i

[138]

Creating Uls to Scale with Flux

Our work is done here. Now, our tweet should look something like this:

Welcome Pardisturn

AP P Profile Logout

How you doing?

TWEET NOW >

Pardisturn
If you have fell behind your target don’t worry, it just means you have more energy to achieve it. #rt #quote #motivation
a few seconds ago

Building user interfaces with Flux

In Flux, we will be defining the responsibility of every module, and it should also be single.
The React responsibility is to re-render the view when that data changes, which is good for
us. All we need to do is listen to these data events using something like Flux, which will
manage our data.

With Flux, you not only separate the responsibility of modules, but also get to do a
unidirectional flow within your app, and that's why Flux is so popular.

In the Flux loop, for every module, there's always one direction to go through. This
intentional constraint on the flow is what makes the Flux applications easy to design, easy
to grow, and easy to manage and maintain.

[139]

Creating Uls to Scale with Flux

The following diagram will give you more clarity on the Flux architecture:

Y\ Callbacks
Actions Dispatcher
Microservices| ... ap)
/Backend Action
Service Creator U
User
React Events

~— Interfaces Views changes

For the diagram, I have taken reference from the Flux repository (https://github.com/fac
ebook/flux).

Actions and dispatcher

To begin with Flux, we have to pick a starting point. It could be anything. I find it good to
start with the actions. You'll also have to pick a direction of flow. You could go clockwise or
counterclockwise. Clockwise is probably good for you as a starting point, so we'll do that.

Don't forget to install the Flux library directly using the following command:

$ npm install flux —--save

Note that the preceding command should be executed from our application directory, or
you can add it in package. json and execute npm install to install the packages.

Now, let's begin with action as our starting point, where we will be following a single
responsibility principle. We'll be creating an actions library to communicate with the API,
and another action to communicate with the dispatcher.

[140]

https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux
https://github.com/facebook/flux

Creating Uls to Scale with Flux

Let's begin by creating the actions folder in the static directory. We will be saving all our
actions in this directory.

Since we have two actions that need to be performed--it could be listing the tweets or
adding new tweets--we'll start with listing the tweets. Create a Tactions file with the
getAllTweets function, which should be calling REST API's to get all the tweets, as
follows:

export default{
getAllTweets () {
//API calls to get tweets.
}

}

I mentioned that Flux-based applications are easy to design, right? Here's why. Because we
know this actions module has a single responsibility with a single flow--either we provide
the API call here or it's better to invoke a module that will make all API calls for the
application.

Update the Tactions. jsx file as follows:

import API from "../API"
export default{
getAllTweets () {
console.log(l, "Tactions for tweets");
API.getAllTweets () ;
}I
}

As you can see, we imported the API module, which will invoke the API's to get the tweets.

So, let's create API . jsx in the static directory with the following code snippet to get tweets
from the backend server:

export default{
getAllTweets () {
console.log (2, "API get tweets");
$.getJSON('/api/v2/tweets', function (tweetModels) {
var t = tweetModels
// We need to push the tweets to Server actions to dispatch
further to stores.
)i
)3

[141]

Creating Uls to Scale with Flux

Create the sactions file in the actions directory, which will call the dispatcher and define
the actionType:

export default{
receivedTweets (rawTweets) {
console.log (3, "received tweets");
//define dispatcher.
}
}

As you can see, we still need to define the dispatcher. Luckily, Facebook created a
dispatcher that comes along with the Flux packages.

As mentioned earlier, Dispatcher is the central hub for your application, which dispatched
the Actions and data for registered callbacks. You can refer to the following diagram for a
better understanding of the data flow:

Dispatcher

Store Store Store

Create a new file named dispatcher. jsx, which will create an instance of dispatcher with
the following lines of code:

import Flux from 'flux';

export default new Flux.Dispatcher();

[142]

Creating Uls to Scale with Flux

That's it. Now you can import this dispatcher anywhere in your application.

So, let's update our Sactions. jsx file, in which you will find the receivedTweets
function, as shown in the following code snippet:

import AppDispatcher from '../dispatcher';
receivedTweets (rawTweets) {
console.log (3, "received tweets");

AppDispatcher.dispatch ({
actionType: "RECEIVED_TWEETS",
rawTweets
})
}

In the receivedTweets function, there are three things to be described. Firstly,
rawTweets will be received from the getAl1Tweets function in API . jsx, which we need
to update as follows:

import SActions from './actions/SActions';

getAllTweets () {
console.log (2, "API get tweets");
$.getJSON('/api/v2/tweets', function (tweetModels) {
var t = tweetModels
SActions.receivedTweets (t)
)i

Stores

Stores manage the application state by taking control of the data within your application,
which means stores manage the data, data retrieval methods, dispatcher callbacks, and so
on.

[143]

Creating Uls to Scale with Flux

For a better understanding, refer to the following diagram:

Dispatcher

Data | Actions

y

Store
Change Current
Event APP
State
Views

Now that we have defined our dispatcher, next, we need to identify the subscriber's for the
change provided by the dispatcher.

Create a separate directory in stores in the static directory, which will contain all the store
definitions.

Let's create a TStore file that will subscribe to any changes emitted by the dispatcher. Add
the following code to the Tstore file which does so:

import AppDispatcher from "../dispatcher";

AppDispatcher.register (action =>{
switch (action.actionType) {

Case "RECEIVED_TWEETS"
console.log (4, "Tstore for tweets");
break;

default:

[144]

Creating Uls to Scale with Flux

At this point, we have started the tweet action, which sent the API module a message to get
all the tweets. The API did that and then invoked the server actions to pass on the data to
the dispatcher. The dispatcher then labeled the data and dispatched it. We also created
stores that basically manage the data and request data from the dispatcher.

Currently, your stores are not connected with our app. The stores are supposed to emit
changes whenever they occur and, based on that, views will be changed as well.

So, our main component is interested in changes emitted events by the store. For now, let's
import our store.

Before we move forward, let's see if our complete flow of application is working fine. It
should be something like this:

[® Q] Console Elements Sources » PoX
Welcome Pardisturn © | top v | Filter Info v
1 "Tactions for tweets" Tactions.jsx:5
2 "API get tweets" APL.jsx:5
APP 3 "recieved tuweets" SActions.jsx:6
4 "Tstore for tweets" TStore. jsx:34

>

How you doing?

TWEET NOW >

Pardisturn
If you have fell behind your target don't worry, it just means you have more energy to achieve it. #rt #quote
#motivation
an hour ago

It's good practice to keep on checking the user interfaces after you have
reached a certain stable state of your application creation.

Let's move on. Currently, we are just dispatching the tweets, next, we need to decide what
we need to do with these tweets. So, let's first receive the tweets and then emit changes to
the views accordingly. We will be using emitter to do that.

[145]

Creating Uls to Scale with Flux

Emitter is a part of the events library that we previously installed using npm. So, we can
import it from there. Note how it is not the default export, but rather the destructed
property on it. Then, our store will be an instance of this tweet EventEmitter class.

Let's update our TStore. jsx file as follows:
import { EventEmitter } from "events";

let _tweets = []
const CHANGE_EVENT = "CHANGE";

class TweetEventEmitter extends EventEmitter{
getAll (){
let updatelist = _tweets.map (tweet => {
tweet.updatedate = moment (tweet.timestamp) .fromNow () ;
return tweet;
)i
return _tweets;
}
emitChange () {
this.emit (CHANGE_EVENT) ;

addChangelistener (callback) {
this.on (CHANGE_EVENT, callback);
}
removeChangeListener (callback) {
this.removelistener (CHANGE_EVENT, callback);
}
}

let TStore = new TweetEventEmitter();

AppDispatcher.register (action =>{
switch (action.actionType) {

case ActionTypes.RECEIVED_TWEETS:
console.log (4, "Tstore for tweets");
_tweets = action.rawTweets;
TStore.emitChange () ;

break;

3

b

export default TStore;

Wow, that's a lot of code to understand at one time! Let's understand it part by part, and the
flow of the code as well.

[146]

Creating Uls to Scale with Flux

Firstly, we will import the EventEmitter library from the events packages by using the
following import utility:

import { EventEmitter } from "events";

Next, we will store the received tweets in _tweets and update the tweets in the getAl1l ()
function so that, in views, it will show the tweet's timing with reference to the current
system time:

getAll (){
let updatelist = _tweets.map (tweet => {
tweet.updatedate = moment (tweet.timestamp) .fromNow () ;
return tweet;

)i

return _tweets;

}

We have also created functions for the views to add and remove the change event listener.
These two functions will also be just a wrap around the EventEmitter syntax.

These functions take callback arguments that will be sent by views. These functions are
basically to add or remove listener for the views to start or stop listening to these changes in
the store. Add the following code to TStore. jsx to do so:

addChangeListener (callback) {

this.on (CHANGE_EVENT, callback);
)3
removeChangeListener (callback) {
this.removelistener (CHANGE_EVENT, callback);
)3

Make sure you have no errors in the console with all the updated code.

Let's move on to views, that is, the main component where we will create a function to pull
data from the store and prepare an object for the state of component.

Let's write getAppState () function in main. jsx, which maintains the state of the app, as
shown in the following code:

let getAppState = () =>{
return { tweetslist: TStore.getAll() };
}

[147]

Creating Uls to Scale with Flux

As mentioned earlier, the file extension doesn't really matter, whether itis . js or . jsx.

Now, we will be calling this function from the Main class, and we will also call the add and
remove listener functions that we created in main. jsx, using the following code block:

import TStore from "./stores/TStore";

class Main extends React.Component {
constructor (props) {
super (props) ;
this.state= getAppState();
this._onChange = this._onChange.bind(this);

//defining the state of component.
}

// function to pull tweets
componentDidMount () {
TStore.addChangelListener (this._onChange);
t

componentWillUnMount () {
TStore.removeChangelListener (this._onChange);

}

_onChange () {
this.setState (getAppState());

}

Also, we have to update the render function to get the Tweetslist state to show in view,
and it is done using the following code snippet:

render () {
return (

<div>
<Tweet sendTweet={this.addTweet.bind(this) }/>

<TweetList tweet={this.state.tweetslist}/>
</div>
)i
}

[148]

Creating Uls to Scale with Flux

Great, we have done pretty much everything now; our tweet should be shown without any
problems, as follows:

Welcome Pardisturn
A PP Profile Logout

How you doing?

TWEET NOW >

Pardisturn
If you have fell behind your target don’t worry, it just means you have more energy to achieve it. #rt #quote #motivation
3 hours ago

Pardisturn
Only | can change my life. No one can do it for me. - Carol Burnett #quote #motivation
16 minutes ago

Awesome! Our application is working fine.

If you look at the architecture diagram of Flux, we have completed the flow of Flux once,
but we still need to complete the cycle by creating the API's to add new tweets.

Let's implement it by sending a new tweet feature using Flux. We will be making a couple
of changes in main. jsx. In the render function, the Tweetcall to addTweet function into

following line:

<Tweet sendTweet={this.addTweet.bind(this) }/>

Instead, we will call the Tweet component without a parameter, as follows:

<Tweet />

[149]

Creating Uls to Scale with Flux

Moreover, in the Tweet component, we will call the TAct ions module to add new tweets.
Update the code in the Tweet component as follows:

import TActions from "../actions/Tactions"

export default class Tweet extends React.Component {
sendTweet (event) {
event .preventDefault ();
// this.props.sendTweet (this.refs.tweetTextArea.value);
TActions.sendTweet (this.refs.tweetTextArea.value);
this.refs.tweetTextArea.value = '';

}
}

The Render function in the Tweet component remains the same.

Let's add a new sendTweet function that will invoke an API call to the endpoint URL of the
backend application and add it to the backend database.

Now, our Taction. jsx file should look like this:

import API from "../API"

export default{

getAllTweets () {
console.log(l, "Tactions for tweets");
API.getAllTweets () ;

}I

sendTweet (body) {

API.addTweet (body) ;

}

}

Now, add the API.addTweet function in API. jsx, which will make an API call and also

update the state of tweetlists as well. Add the following addTweet function to the API . jsx
file:

addTweet (body) {

$S.ajax ({
url: '/api/v2/tweets',
contentType: 'application/json',

type: 'POST',

data: JSON.stringify ({
'username': "Pardisturn",
'body': body,

)y

success: function() {

[150]

Creating Uls to Scale with Flux

rawTweet => SActions.receivedTweet ({ tweetedby:
"Pardisturn",body: tweet, timestamp: Date.now})
s
error: function() {
return console.log("Failed");

1)
}

Also, we are passing the newly added tweets to the server actions to get them dispatched
and available for stores.

Let's add a new function, receivedTweet, which will dispatch them. Use the following
code snippet to do so:

receivedTweet (rawTweet) {
AppDispatcher.dispatch ({
actionType: ActionTypes.RECEIVED_TWEET,
rawTweet
})
}

ActionTypes are constantly defined in constants. jsx in the static directory.

Now, let's define the RECEIVED_TWEETactiontype case in the tweet store to emit changes
for the view to take further action. The following is the updated
Appdispatcher.register function defined in TStore. jsx:

AppDispatcher.register (action =>{
switch (action.actionType) {
case ActionTypes.RECEIVED_TWEETS:
console.log (4, "Tstore for tweets");

_tweets = action.rawTweets;
TStore.emitChange () ;
break;

case ActionTypes.RECEIVED_TWEET:
_tweets.unshift (action.rawTweet);
TStore.emitChange () ;
break;
default:

[151]

Creating Uls to Scale with Flux

Now, we are pretty much done with adding a new tweet module using Flux and it should
work totally fine, as shown in the following screenshot:

Welcome Pardisturn

Profile Logout

How you doing?

You can't base your life on other people's expectations. -Stevie Wonder

TWEET NOW >

Now, if we click on the Tweet Now button, the tweet should be added and it should project
in the following panel, as shown here:

Welcome Pardisturn
A PP Profile Logout

How you doing?

TWEET NOW >

Pardisturn
You can't base your life on other people's expectations. -Stevie Wonder
in 12 minutes

[152]

Creating Uls to Scale with Flux

Summary

In this chapter, you learned how to structure our application by using the Flux pattern, and
we also got an understanding of the different concepts of Flux, such as dispatcher, stores,
and so on. Flux gives you good patterns to distribute responsibility between modules,
which really needs to be understood, as we are developing an application for the cloud
platform, such as AWS, Azure, and so on, so our application should be highly responsive.
That's all we have from the building user interfaces side, but in the coming chapter, we will
understand a few important concepts, such as event sourcing, and how we can make the
application more secure by using different authentication methods.

[153]

Learning Event Sourcing and
CQRS

In the last chapter, we looked into the drawbacks of our current business model, and now,
in this chapter, we'll look at how Event Sourcing (ES) and CQRS (Command Query
Responsibility Segregation) would be helpful to overcome those.

In this chapter, we will talk about some architectural designs that deal with massive
scalability. We will also look at two patterns, Event Sourcing and CQRS, which are all about
solving the problem response behavior for such an enormous number of requests.

Many of us think that compliance with twelve-factor apps will make our application a
cloud native application with higher scalability, but there are other strategies, such as ES
and CQRS, which can make our application more reliable.

Since cloud native applications are internet facing, we expect thousands or millions of
requests from different sources. Implementing infrastructure architecture to handle the
requests by scaling up or down aren't enough. You need to make your application support
such enormous scaling. That's when these patterns come into the picture.

The topics that we will cover in this chapter are listed as follows:

e Introduction to Event Sourcing

e Introduction to Command Query Responsibility Segregation
¢ Example code to implement ES and CQRS

¢ Event Sourcing with Apache Kafka

Learning Event Sourcing and CQRS

Introduction

Let's start with reviewing the n-tier architecture, where we have some clients, a network, a
business model, some business logic, some data storage, and so on. This is a basic model,
which you will find as part of any architectural design. It looks something like the following
diagram:

@)

CLIENT View
Model
Networking Data Transfer
Object Model
[REST End Point]
Business
[Business Service } Model
[DAO(Data Access Object) }
- E-R
Networking Model
[RDMS/NDMS J

\ /

As you can see in this architecture, we have these different models that come into action:

e View Model: This is basically for client-side interaction

e DTO Model: This is for communication between the client and the REST
Endpoints

¢ Business Model: This is a combination of DAO (Data Access Object) and
business service, which interprets the user requests, and communicates with the
storage service

¢ E-R Model: This defines the relationship between entities (that is, DTO and
RDMS/NDMS)

[155]

Learning Event Sourcing and CQRS

Now that you have some idea about the architecture, let's understand its characteristics,

which are listed as follows:

e Identical stack for application: In this model, we use the same stack of elements
for all read and write operations, starting from REST API to business service, and
then we access the storage services, and so on, as all the different component

codes are deployed together as a single entity.

The following diagram shows the Read/Write operation flow through different

models:

CLIENT \

Networking

REST End Point

Read Business Service Write

DAO

\

LU

Networking

\V ROMSINDS Kﬂ /

View
Model

Data Transfer
Object Model

Business
Model

E-R
Model

e Identical Data Model: In this scenario, you will find that most of the times, we
use the same or a similar data model for business logic processing, or for reading

and writing data.

[156]

Learning Event Sourcing and CQRS

¢ Deployment Units: We use coarse-grained deployment units, which consist of
the following:
¢ A build (an executable collection of components)
¢ Documents (end-user support material and release notes)

o Installation artifacts, which combine both the read and write code
together

¢ Accessing data directly: If we want to change data, we usually go ahead.
Especially, in the case of RDBMS, we change the data directly, as in the following
case--if we want to update the row with User ID 1 with another dataset, we
usually do it directly. Also, once we have updated this value, the old value will
be void from the application as well as the storage side, and cannot be retrieved:

[REST End Point] 4 A
Busi Servi
{ usiness Service } Event
[DAO(Data Access Object)
N _/
1 Adam pwhCaCNérc
2 Robin 2fJaEAPQjX

So far, we have been making use of the preceding approach, and I would say that it is pretty
much proven and successful in terms of the response from user requests. However, there
are other alternate approaches which can perform much better than this when compared.

[157]

Learning Event Sourcing and CQRS

Let's discuss the drawbacks of the aforementioned business architecture approach, which
are as follows:

e Inability to scale independently: Since our code for the read and write
operations reside at the same location, we cannot scale our read or write for the
application independently. Say you have 90% read and 10% write from the
application side at a particular point in time, we can't scale our read
independently. In order to scale reads, we need to scale out the complete
architecture, which is of no use, and increases the waste of resources.

¢ No data history: Since we are dealing with the scenario where we update the
data directly, once the data is updated, the application will start showing the
latest dataset after some period of time. Also, once the dataset is updated, old
data values are not tracked, and hence, are lost. Even if we want to implement
such kinds of features, we need to write lots of code to enable it.

e Monolithic approach: This approach tends to be a monolithic approach, as we
try to merge things together. Moreover, we have coarse-grained deployment
units, and we try to keep the code of the different components together. So, this
kind of approach will ultimately result in a mess, which will be difficult to
resolve.

One kind of approach which addresses these challenges is Event Sourcing.

Understanding Event Sourcing

By simple definition, Event Sourcing is an architectural pattern which determines the state
of an application by a sequence of events.

The best way to understand Event Sourcing is by using an analogy. One of the best
examples would be online shopping, which is an event processing system. Somebody
places an order, which gets registered in an order queue for a vendor ordering system.
Then, this status is notified to the customer at different stages of the order being delivered.

[158]

Learning Event Sourcing and CQRS

All these events, which occur one after the other, form a sequence of events called an event
stream, which should look something like the following diagram:

coo ooo[Event]—n[Event]—b[Event

Current State

So, Event Sourcing takes consideration of events which happened in the past, and are
recorded for processing based on certain transactions.

An ideal Event Sourcing system is based on the building blocks shown in the following
diagram:

P8

v
Apps
— /
Actions/Events
e v ™
Event Queue
| —
v
e
Event
handler Registering and
Processing of events
Event
Streams ~| | Store
-
L y

[159]

Learning Event Sourcing and CQRS

The preceding diagram depicts an ideal event processing system, starting from the
application to the creation of Events related to a certain incident, and then putting them in
an Event Queue for further processing, which is performed by an Event Handler. Based on
the description of the Events, the Event Handler processes them accordingly, and registers
them in the Store.

Event Sourcing follows certain laws/tenets, which make application development a
structured and disciplined process. Most people usually feel that Event Sourcing is hard or
they think it is outright because of these tenets, which must not be broken, as doing so will
create a huge chaos in the application.

Laws of Event Sourcing

Listed next are some of the Event Sourcing laws which need to be maintained while
implementing ES on any system (that is, application design):

e Idempotency: An ideal event-sourced business logic must be idempotent. This
means that when you execute a business logic against an input stream of data, the
resultant state of the application will always remain the same. Yes, that's true, it
will remain the same irrespective of the number of times you execute the business
logic.

¢ Isolation: Event Sourcing must not depend on the external event streams. This is
one of the most important tenets of Event Sourcing. Generally, business logic is
rarely ever executed in a vacuum. Applications usually interact with external
entities for reference. Moreover, applications make use of cached information
from external sources, even if developers don't consider that point. Now, the
question that arises is what happens if your business logic uses the external input
to compute results? Let's take the example of a stock exchange, where stock
prices keep on changing, which means that the stock price at the time of state
computation won't be the same on multiple evaluations, which violates the
idempotent rule.

¢ As per the developer's understanding, this is a very difficult
condition to satisfy. However, the solution to deal with this is to
inject notifications into the main event stream from external
events. Since these notifications are now part of the main events
stream, you will get the expected result every time.

[160]

Learning Event Sourcing and CQRS

¢ Quality assurance: An event-sourced application, after being developed
completely, should be a well-tested application. Writing test cases for the event-
sourced application is easy--it usually takes a list of inputs and returns some
state, considering that you are writing test cases following the previously defined
principles.

» Recoverable: Event-sourced applications should support recovery and replay. If
you have a cloud native application which adheres to all the guidelines of the
twelve-factor apps to create an application suitable for the cloud platform, Event
Sourcing plays a vital role in disaster recovery.

Assuming that the event stream is durable, an event-sourced application's initial
advantage is to compute the state of the application. Usually, in a cloud
environment, it is possible that the application crashes because of numerous
reasons; Event Sourcing can help us identify the last state of the application, and
recover it quickly to reduce the downtime. Moreover, Event Sourcing's replay
functionality gives you the ability to look at the past state at the time of auditing,
as well as troubleshooting.

¢ Big Data: Event Sourcing applications often generate huge amounts of data. Since
an event-sourced application keeps track of every event, it is possible that it will
generate huge amounts of data. It depends on how many events you have, how
often they arrive, and how huge the data payload is for the events.

¢ Consistency: Event-sourced applications often maintain consistency for the
registering of events. Think of banking transactions--every event happening
during a bank transaction is very crucial. It should be noted that consistency
should be maintained while recording it.

It is very important to understand that these events are something that happened in the
past, because when we name these events, they should be understandable. Examples of a
few valid names for events could be as follows:

® PackageDeliveredEvent
e UserVerifiedEvent

e PaymentVerifiedEvent

Invalid events would be named as follows:

® CreateUserEvent

e AddtoCartEvent

[161]

Learning Event Sourcing and CQRS

The following is some example code for an event:

class ExampleApplication (ApplicationWithPersistencePolicies):
def __init__ (self, **kwargs):
super (ExampleApplication, self).__init__ (**kwargs)
self.snapshot_strategy = None
if self.snapshot_event_store:
self.snapshot_strategy = EventSourcedStrategy (
event_store=self.snapshot_event_store,
)
assert self.integer_sequenced_event_store is not None
self.example_repository = ExampleRepository (
event_store=self.integer_sequenced_event_store,
snapshot_strategy=self.snapshot_strategy,
)

There are a few points that you should know:

e Every event is immutable, which means that an event, once fired, cannot be
reverted.

* You never delete an event. Even if we try to delete an event, we consider deletion
also as an event.

¢ Event streams are driven by message-broker architecture. Some of the message
brokers are RabbitMQ, ActiveMQ, and so on.

Now, let's discuss some of the pros of Event Sourcing, which are as follows:

¢ Event Sourcing gives the capability to rebuild the system very quickly

¢ Event Sourcing gives you command over the data, which means that the data we
require for our processing is easy to acquire by looking at the event stream for
your processing purpose, say by audit, analysis, and so it should be audit,
analysis, and so on

¢ By looking at the events, it is easy to understand what went wrong during a
period of time, considering a set of data

¢ Event replay would be advantageous during troubleshooting or bug fixing

[162]

Learning Event Sourcing and CQRS

Now, the question arises that since we are generating such a huge amount of events, does
this affect the performance of the application? I would say, YES!

As our application is generating events for every transaction which needs to be processed
by the event handler, the response time of the application is reduced. The solution to this
problem is CQRS.

Introduction to CQRS

Command Query Responsibility Segregation is a fancy pattern name, which means
decoupling the input and the output of your system. In CQRS, we mainly talk about the
read and write characteristics of our application; so, the commands in the context of CQRS
are mainly write operations, while the queries are read operations, and responsibility means
that we separate our read and write operations.

If we look at the architecture described in the first section, Introduction, and apply CQRS,
the architecture will be divided into half, and would look something like this:

- 2\

Client ’
‘ Query Endpoint ’ ‘ Command Endpoint ’

‘ Query Business Service Command Business Service

Network

RDMS ’

_/

S

Now we will look at some code examples.

[163]

Learning Event Sourcing and CQRS

A traditional interface module would look something like this:

Class managementservice (interface) :

Saveuser (us
Updateuser (u

listuserbyusername (username) ;

listuserbyid

erdata) ;
serid);

(userid);

Split-up, or as I prefer to call them, CQRS-ified interfaces, would look something like this:

Class managementcommandservice (interface) :

Saveuser (u
Updateuser (u

serdata) ;
serid);

Class managementqueryservice (interface) :

listuserbyusername (username) ;

listuserbyid

(userid) ;

So, the overall architecture, after the implementation of CQRS and Event Sourcing, would
be something like the one shown in the following diagram:

(=

Client

)

‘ Query Endpoint J

‘ Query Business Service W

{ Command Endpoint ’

[(:ommand Business Service}

Read ‘ Command processor ’ Write

l

Storage W

N

T

‘ Event Store J

/

This is the complete architecture after the implementation of Event Sourcing and CQRS.

[164]

Learning Event Sourcing and CQRS

In a classic monolithic application, you have endpoints that write to a database, and
endpoints that read from it. The same database is used for both read and write operations,
and you don't reply to the endpoints until an acknowledgement or commit is received from
the database.

On a massive scale, with a high inbound event throughput and complex event processing
requirements, you can't afford to run slow queries for reads, nor can you afford to sit and
wait for processing to take place every time you get a new inbound event.

The flow for both read and write operations works as follows:

e Write model: In this case, when a command is fired from the endpoint and
received at the Command Business Service, it first issues the events for every
incident to the Event Store. In the Event Store, you also have a Command
processor, or, in other words, event handler, and this Command processor is able
to derive the application state into a separate Storage, which could be a relational
storage.

¢ Read model: In the case of the Read model, we simply use the Query Endpoints
to query the data which we want to Read or retrieve for the application usage by
the client.

The biggest advantage is that we don't need to go through the Write model (which is on the
right-hand side of the preceding image). When it comes to querying the database, this
process makes our query execution faster, and reduces the response time which, in turn,
increases the application's performance.

Advantages of the CQRS-ified architecture

This architecture has the following advantages:

¢ Independent scalability and deployment: We can now scale and deploy an
individual component based on its usage. As in the case of microservices, we can
now have separate microservices for each of the tasks, say a read microservice
and a write microservice, in this architecture stack.

¢ Choice of technologies: Freedom with regards to the choice of technologies for
the different sections of the business model. For instance, for the command
functionality, we could choose Scala or similar (assuming that we have a complex
business model, and we have a lot of data to write). In the case of a query, we can
choose, for example, ROR (Ruby on Rails) or Python (which we are already
using).

[165]

Learning Event Sourcing and CQRS

This type of architecture is best suited for bounded context from DDD (Domain-Driven
design), because we can define the business context for the microservices.

Challenges related to ES and CQRS

Every architecture design model has its own challenges for implementation. Let's discuss
the challenges of ES and CQRS:

e Inconsistency: Systems developed using ES and CQRS are mostly consistent.
However, as we store the events issued by the Command Business Service at the
Event Store, and store the state of the application in the main Storage as well, I
would say this kind of system is not fully consistent. If we really want to make
our system fully consistent using ES and CQRS, we need to keep our Event Store
and main Storage on a single Relational Database, and our Command processor
should handle all our incoming events, and store them in both storages at the
same time, as depicted in the following diagram:

=)

’ Query Endpoint ’ ‘ Command Endpoint ’

[Command Business Service}

V4

[Command processor]

’ Query Business Service

Read

Write
\ o N
[Storage] [Event Store ’

K Relational Database /

[166]

Learning Event Sourcing and CQRS

I would say that the consistency level should be defined by understanding the
business domain. How much consistency you would need in events, and how
much these consistencies would cost, needs to be understood. After inspecting
your business domain, you will be able to make these decisions considering the
aforementioned factors.

¢ Validation: It is very easy when we talk in terms of validating the customer

registration form, where we need to validate the individual field, and so on. But
actual validation comes when we have to do validation based on uniqueness--say
we have a customer with certain user credentials (username/password). So, to
make sure that the username is unique is a crucial validation when we have more
than 2 million customers who need to be registered. A few questions that need to
be asked in terms of validation are as follows:

e What is the data requirement for validation?

e Where to retrieve the data for validation from?

e What is the probability of validation?

e What is the impact of validation failure on the business?

e Parallel data updates: This is very crucial in terms of data consistency. Say, you
have a user who wants to update certain records at the same time, or within a
difference of nanoseconds. In this case, the possibility of consistency as well as
validation checks is challenging, as there is a possibility that one user might end
up overwriting the other user information which could create chaos.

Overcoming challenges

One way to solve such a problem in Event Sourcing is to add versions in events, which will
act as a handle for making changes to the data and make sure it is validated fully.

Problem solving

Let's take the use case shown in the following diagram for Event Sourcing and CQRS to
understand it in terms of writing code for it:

[167]

Learning Event Sourcing and CQRS

/ 4 User N \

Details

User ID
username
password

k emailid /

Commands

UserRegisterCommand
UpdatePasswordCommand

Events

UserRegisterEvents
UpdatePasswordEvents

_ /

Explanation of the problem

In this case, we are provided with User Details such as User ID (which should be unique),
username, password, email ID, and so on, and we have to create two write Commands to
be fired--UserRegistrationCommand and UpdatePasswordCommand, which trigger two
Events: UserRegisterEvents and UpdatePasswordEvents. The idea is that a user, once
registered, should be able to reset the password as per their needs.

The solution

In order to solve this problem, we will need to write functions related to write commands to
receive the inputs and update the event store.

[168]

Learning Event Sourcing and CQRS

Now, let's add the following code to the commands . py file, which will have code related to
the write commands that need to be performed as described:

class userregister (object) :
def __init__ (self, user_id, user_name, password, emailid):
self.user_id = user_id
self.user_name = user_name
self.password = password
self.emailid = emaild

class updatepassword (object) :
def __init__ (self, user_id, new_password, original_version):
self.item_id = item_id
self.new_password = new__password
self.original_version = original_version

So, we have added the functions related to the commands, but it should be called from
somewhere with the user details.

Let's add a new file called main.py from where the preceding command's function will be
called.

In the following code, we call the preceding code by triggering events:

from aggregate import Aggregate
from errors import InvalidOperationError
from events import *

class userdetails (Aggregate) :
def __init__ (self, id = None, name = '"", password = "", emailid =
wn):
Aggregate.__init__ (self)
self._apply_changes (Userdetails (id, name, password, emailid))

def userRegister(self, userdetails):
userdetails = {1, "robin99", "xxxxxx", "robinatkevin@gmail.com"

self._apply_changes (UserRegisterevent (userdetails))
def updatePassword(self, count):

password = ""
self._apply_changes (UserPasswordEvent (password))

[169]

Learning Event Sourcing and CQRS

Let's understand the preceding code, function by function:
def __init__ (self, id = None, name = '"", password = "", emailid =
nmn) .

Aggregate.__init__ (self)
self._apply_changes (Userdetails (id, name, password, emailid))

The last code initializes the self object with some default values; it is similar to the
initialize function in any programming language.

Next, we defined the userRegister function, which, basically, collects userdetails, and
then creates the event (UserRegisterevent (userdetails))) as follows:

def userRegister(self, userdetails):
userdetails = {1, "robin99", "xxxxxx", "robinatkevin@gmail.com"
t

self._apply_changes (UserRegisterevent (userdetails))

So, once the user is registered, he/she is authorized to update the profile details, which
could be the email ID, password, username, and others--in our case, it is the password.
Please refer to the following code:

def updatePassword(self, count):
password = ""
self._apply_changes (UserPasswordEvent (password))

You can write similar code for updating the email ID, username, or others.

Moving on, we need to add error handling, as in our main.py file, we call a custom
module, errors, to handle operation-related errors. Let's add t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>